Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 1999 Aug;83(8):902–910. doi: 10.1136/bjo.83.8.902

Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images

C Sinthanayothin 1, J Boyce 1, H Cook 1, T Williamson 1
PMCID: PMC1723142  PMID: 10413690

Abstract

AIM—To recognise automatically the main components of the fundus on digital colour images.
METHODS—The main features of a fundus retinal image were defined as the optic disc, fovea, and blood vessels. Methods are described for their automatic recognition and location. 112 retinal images were preprocessed via adaptive, local, contrast enhancement. The optic discs were located by identifying the area with the highest variation in intensity of adjacent pixels. Blood vessels were identified by means of a multilayer perceptron neural net, for which the inputs were derived from a principal component analysis (PCA) of the image and edge detection of the first component of PCA. The foveas were identified using matching correlation together with characteristics typical of a fovea—for example, darkest area in the neighbourhood of the optic disc. The main components of the image were identified by an experienced ophthalmologist for comparison with computerised methods.
RESULTS—The sensitivity and specificity of the recognition of each retinal main component was as follows: 99.1% and 99.1% for the optic disc; 83.3% and 91.0% for blood vessels; 80.4% and 99.1% for the fovea.
CONCLUSIONS—In this study the optic disc, blood vessels, and fovea were accurately detected. The identification of the normal components of the retinal image will aid the future detection of diseases in these regions. In diabetic retinopathy, for example, an image could be analysed for retinopathy with reference to sight threatening complications such as disc neovascularisation, vascular changes, or foveal exudation.



Full Text

The Full Text of this article is available as a PDF (350.6 KB).

Figure 1  .

Figure 1  

Digital colour retinal image.

Figure 2  .

Figure 2  

Retinal image after preprocessing by local colour contrast enhancement.

Figure 3  .

Figure 3  

The variance image of Figure 2.

Figure 4  .

Figure 4  

An example of the data input to the net, of size 2 × 10 × 10 pixels. In this example, the pattern was classified as vessel.

Figure 5  .

Figure 5  

Classification of the image Figure 2 into vessels/non-vessels.

Figure 6  .

Figure 6  

The classified image after post-processing to remove small regions.

Figure 7  .

Figure 7  

The results of automatic recognition of the main components of the fundus from a digital fundus colour image.

Figure 8  .

Figure 8  

A sample of images showing the results of the recognition of the main components from digital fundus colour images.

Figure 9  .

Figure 9  

Example of patch of size 20 × 20 pixels used to measure the accuracy of vessels recognition.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astion M. L., Wilding P. The application of backpropagation neural networks to problems in pathology and laboratory medicine. Arch Pathol Lab Med. 1992 Oct;116(10):995–1001. [PubMed] [Google Scholar]
  2. Cree M. J., Olson J. A., McHardy K. C., Sharp P. F., Forrester J. V. A fully automated comparative microaneurysm digital detection system. Eye (Lond) 1997;11(Pt 5):622–628. doi: 10.1038/eye.1997.166. [DOI] [PubMed] [Google Scholar]
  3. Gardner G. G., Keating D., Williamson T. H., Elliott A. T. Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. Br J Ophthalmol. 1996 Nov;80(11):940–944. doi: 10.1136/bjo.80.11.940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldbaum M. H., Sample P. A., White H., Côlt B., Raphaelian P., Fechtner R. D., Weinreb R. N. Interpretation of automated perimetry for glaucoma by neural network. Invest Ophthalmol Vis Sci. 1994 Aug;35(9):3362–3373. [PubMed] [Google Scholar]
  5. Higgs E. R., Harney B. A., Kelleher A., Reckless J. P. Detection of diabetic retinopathy in the community using a non-mydriatic camera. Diabet Med. 1991 Jul;8(6):551–555. doi: 10.1111/j.1464-5491.1991.tb01650.x. [DOI] [PubMed] [Google Scholar]
  6. Javitt J. C., Canner J. K., Sommer A. Cost effectiveness of current approaches to the control of retinopathy in type I diabetics. Ophthalmology. 1989 Feb;96(2):255–264. doi: 10.1016/s0161-6420(89)32923-x. [DOI] [PubMed] [Google Scholar]
  7. Lee V. S., Kingsley R. M., Lee E. T., Lu M., Russell D., Asal N. R., Bradford R. H., Jr, Wilkinson C. P. The diagnosis of diabetic retinopathy. Ophthalmoscopy versus fundus photography. Ophthalmology. 1993 Oct;100(10):1504–1512. doi: 10.1016/s0161-6420(93)31449-1. [DOI] [PubMed] [Google Scholar]
  8. Lo S. C., Freedman M. T., Lin J. S., Mun S. K. Automatic lung nodule detection using profile matching and back-propagation neural network techniques. J Digit Imaging. 1993 Feb;6(1):48–54. doi: 10.1007/BF03168418. [DOI] [PubMed] [Google Scholar]
  9. Marr D., Hildreth E. Theory of edge detection. Proc R Soc Lond B Biol Sci. 1980 Feb 29;207(1167):187–217. doi: 10.1098/rspb.1980.0020. [DOI] [PubMed] [Google Scholar]
  10. Phillips R. P., Spencer T., Ross P. G., Sharp P. F., Forrester J. V. Quantification of diabetic maculopathy by digital imaging of the fundus. Eye (Lond) 1991;5(Pt 1):130–137. doi: 10.1038/eye.1991.24. [DOI] [PubMed] [Google Scholar]
  11. Phillips R. P., Spencer T., Ross P. G., Sharp P. F., Forrester J. V. Quantification of diabetic maculopathy by digital imaging of the fundus. Eye (Lond) 1991;5(Pt 1):130–137. doi: 10.1038/eye.1991.24. [DOI] [PubMed] [Google Scholar]
  12. Pugh J. A., Jacobson J. M., Van Heuven W. A., Watters J. A., Tuley M. R., Lairson D. R., Lorimor R. J., Kapadia A. S., Velez R. Screening for diabetic retinopathy. The wide-angle retinal camera. Diabetes Care. 1993 Jun;16(6):889–895. doi: 10.2337/diacare.16.6.889. [DOI] [PubMed] [Google Scholar]
  13. Singer D. E., Nathan D. M., Fogel H. A., Schachat A. P. Screening for diabetic retinopathy. Ann Intern Med. 1992 Apr 15;116(8):660–671. doi: 10.7326/0003-4819-116-8-660. [DOI] [PubMed] [Google Scholar]
  14. Spenceley S. E., Henson D. B., Bull D. R. Visual field analysis using artificial neural networks. Ophthalmic Physiol Opt. 1994 Jul;14(3):239–248. doi: 10.1111/j.1475-1313.1994.tb00004.x. [DOI] [PubMed] [Google Scholar]
  15. Spencer T., Phillips R. P., Sharp P. F., Forrester J. V. Automated detection and quantification of microaneurysms in fluorescein angiograms. Graefes Arch Clin Exp Ophthalmol. 1992;230(1):36–41. doi: 10.1007/BF00166760. [DOI] [PubMed] [Google Scholar]
  16. Spencer T., Phillips R. P., Sharp P. F., Forrester J. V. Automated detection and quantification of microaneurysms in fluorescein angiograms. Graefes Arch Clin Exp Ophthalmol. 1992;230(1):36–41. doi: 10.1007/BF00166760. [DOI] [PubMed] [Google Scholar]
  17. Taylor R., Lovelock L., Tunbridge W. M., Alberti K. G., Brackenridge R. G., Stephenson P., Young E. Comparison of non-mydriatic retinal photography with ophthalmoscopy in 2159 patients: mobile retinal camera study. BMJ. 1990 Dec 1;301(6763):1243–1247. doi: 10.1136/bmj.301.6763.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ward N. P., Tomlinson S., Taylor C. J. Image analysis of fundus photographs. The detection and measurement of exudates associated with diabetic retinopathy. Ophthalmology. 1989 Jan;96(1):80–86. [PubMed] [Google Scholar]
  19. Wareham N. J. Cost-effectiveness of alternative methods for diabetic retinopathy screening. Diabetes Care. 1993 May;16(5):844–844. doi: 10.2337/diacare.16.5.844a. [DOI] [PubMed] [Google Scholar]
  20. Williams R., Nussey S., Humphry R., Thompson G. Assessment of non-mydriatic fundus photography in detection of diabetic retinopathy. Br Med J (Clin Res Ed) 1986 Nov 1;293(6555):1140–1142. doi: 10.1136/bmj.293.6555.1140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williamson T. H., Keating D. Telemedicine and computers in diabetic retinopathy screening. Br J Ophthalmol. 1998 Jan;82(1):5–6. doi: 10.1136/bjo.82.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wu Y., Giger M. L., Doi K., Vyborny C. J., Schmidt R. A., Metz C. E. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Radiology. 1993 Apr;187(1):81–87. doi: 10.1148/radiology.187.1.8451441. [DOI] [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES