Abstract
BACKGROUND—The influence of diabetes mellitus on ocular pulse amplitude (OPA), an indirect measure of choroidal perfusion, is unclear. METHODS—OPA, using the Langham ocular blood flow (OBF) system, applanation intraocular pressure (IOP), systemic blood pressure (BP), heart rate, and haemoglobin (Hb) A1c were measured in patients with insulin dependent diabetes mellitus (IDDM) with no (DR-0, n = 22) non-proliferative (DR-1, n = 24), and proliferative (DR-2, n = 18) diabetic retinopathy. RESULTS—Neither local (OPA, IOP) nor systemic perfusion parameters (BPs, HR) nor HbA1c were significantly altered in DR-0, DR-1, or DR-2 IDDM patients. CONCLUSION—Choroidal circulation remains unaffected as diabetic retinopathy advances.
Full Text
The Full Text of this article is available as a PDF (120.1 KB).
Figure 1 .
Ocular pulse amplitudes (OPA; mean (SD)) of patients with insulin dependent diabetes mellitus with different stages of diabetic retinopathy, no (DR-0, n = 22), non-proliferative (DR-1, n = 24), and proliferative (DR-2, n = 18) diabetic retinopathy compared with matched subgroups from a pool of healthy controls (n = 72). There were no significant changes in any of the parameters shown in this diagram using Student's unpaired two tailed t test.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alm A., Bill A. The oxygen supply to the retina. II. Effects of high intraocular pressure and of increased arterial carbon dioxide tension on uveal and retinal blood flow in cats. A study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Acta Physiol Scand. 1972 Mar;84(3):306–319. doi: 10.1111/j.1748-1716.1972.tb05182.x. [DOI] [PubMed] [Google Scholar]
- Brownlee M. Lilly Lecture 1993. Glycation and diabetic complications. Diabetes. 1994 Jun;43(6):836–841. doi: 10.2337/diab.43.6.836. [DOI] [PubMed] [Google Scholar]
- Bursell S. E., Clermont A. C., Kinsley B. T., Simonson D. C., Aiello L. M., Wolpert H. A. Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci. 1996 Apr;37(5):886–897. [PubMed] [Google Scholar]
- Caldwell R. B., Fitzgerald M. E. The choriocapillaris in spontaneously diabetic rats. Microvasc Res. 1991 Nov;42(3):229–244. doi: 10.1016/0026-2862(91)90058-j. [DOI] [PubMed] [Google Scholar]
- Ernst E., Matrai A. Altered red and white blood cell rheology in type II diabetes. Diabetes. 1986 Dec;35(12):1412–1415. doi: 10.2337/diab.35.12.1412. [DOI] [PubMed] [Google Scholar]
- Feke G. T., Buzney S. M., Ogasawara H., Fujio N., Goger D. G., Spack N. P., Gabbay K. H. Retinal circulatory abnormalities in type 1 diabetes. Invest Ophthalmol Vis Sci. 1994 Jun;35(7):2968–2975. [PubMed] [Google Scholar]
- Fryczkowski A. W., Hodes B. L., Walker J. Diabetic choroidal and iris vasculature scanning electron microscopy findings. Int Ophthalmol. 1989 Jul;13(4):269–279. doi: 10.1007/BF02280087. [DOI] [PubMed] [Google Scholar]
- Grunwald J. E., Riva C. E., Sinclair S. H., Brucker A. J., Petrig B. L. Laser Doppler velocimetry study of retinal circulation in diabetes mellitus. Arch Ophthalmol. 1986 Jul;104(7):991–996. doi: 10.1001/archopht.1986.01050190049038. [DOI] [PubMed] [Google Scholar]
- Langham M. E., Grebe R., Hopkins S., Marcus S., Sebag M. Choroidal blood flow in diabetic retinopathy. Exp Eye Res. 1991 Feb;52(2):167–173. doi: 10.1016/0014-4835(91)90256-e. [DOI] [PubMed] [Google Scholar]
- Langham M. E., Kramer T. Decreased choroidal blood flow associated with retinitis pigmentosa. Eye (Lond) 1990;4(Pt 2):374–381. doi: 10.1038/eye.1990.50. [DOI] [PubMed] [Google Scholar]
- MacGregor L. C., Rosecan L. R., Laties A. M., Matschinsky F. M. Altered retinal metabolism in diabetes. I. Microanalysis of lipid, glucose, sorbitol, and myo-inositol in the choroid and in the individual layers of the rabbit retina. J Biol Chem. 1986 Mar 25;261(9):4046–4051. [PubMed] [Google Scholar]
- McLeod D. S., Lutty G. A. High-resolution histologic analysis of the human choroidal vasculature. Invest Ophthalmol Vis Sci. 1994 Oct;35(11):3799–3811. [PubMed] [Google Scholar]
- Moss S. E., Klein R., Klein B. E. Ten-year incidence of visual loss in a diabetic population. Ophthalmology. 1994 Jun;101(6):1061–1070. doi: 10.1016/s0161-6420(94)31217-6. [DOI] [PubMed] [Google Scholar]
- Patel V., Rassam S., Newsom R., Wiek J., Kohner E. Retinal blood flow in diabetic retinopathy. BMJ. 1992 Sep 19;305(6855):678–683. doi: 10.1136/bmj.305.6855.678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt K. G., Mittag T. W., Pavlovic S., Hessemer V. Influence of physical exercise and nifedipine on ocular pulse amplitude. Graefes Arch Clin Exp Ophthalmol. 1996 Aug;234(8):527–532. doi: 10.1007/BF00184863. [DOI] [PubMed] [Google Scholar]
- Schmidt K. G., Rückmann A. V., Mittag T. W., Hessemer V., Pillunat L. E. Reduced ocular pulse amplitude in low tension glaucoma is independent of vasospasm. Eye (Lond) 1997;11(Pt 4):485–488. doi: 10.1038/eye.1997.131. [DOI] [PubMed] [Google Scholar]
- Schmidt K. G., von Rückmann A., Geyer O., Mittag T. W. Einfluss des Nifedipins auf die okuläre Pulsamplitude bei Normaldruckglaukom. Klin Monbl Augenheilkd. 1997 Jun;210(6):355–359. doi: 10.1055/s-2008-1035074. [DOI] [PubMed] [Google Scholar]
- Schmidt K. G., von Rückmann A., Mittag T. W. Okuläre Pulsamplitude bei okulärer Hypertension und verschiedenen Glaukomformen. Ophthalmologica. 1998;212(1):5–10. doi: 10.1159/000027250. [DOI] [PubMed] [Google Scholar]
- Schmidt K. G., von Rückmann A., Pillunat L. E. Topical carbonic anhydrase inhibition increases ocular pulse amplitude in high tension primary open angle glaucoma. Br J Ophthalmol. 1998 Jul;82(7):758–762. doi: 10.1136/bjo.82.7.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setiadi H., Wautier J. L., Courillon-Mallet A., Passa P., Caen J. Increased adhesion to fibronectin and Mo-1 expression by diabetic monocytes. J Immunol. 1987 May 15;138(10):3230–3234. [PubMed] [Google Scholar]
- St Louis P. J., Sulakhe P. V. Phosphorylation of cardiac sarcolemma by endogenous and exogenous protein kinases. Arch Biochem Biophys. 1979 Nov;198(1):227–240. doi: 10.1016/0003-9861(79)90414-4. [DOI] [PubMed] [Google Scholar]
- Tilton R. G., LaRose L. S., Kilo C., Williamson J. R. Absence of degenerative changes in retinal and uveal capillary pericytes in diabetic rats. Invest Ophthalmol Vis Sci. 1986 May;27(5):716–721. [PubMed] [Google Scholar]
- Trew D. R., Smith S. E. Postural studies in pulsatile ocular blood flow: I. Ocular hypertension and normotension. Br J Ophthalmol. 1991 Feb;75(2):66–70. doi: 10.1136/bjo.75.2.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Törnquist P., Alm A. Retinal and choroidal contribution to retinal metabolism in vivo. A study in pigs. Acta Physiol Scand. 1979 Jul;106(3):351–357. doi: 10.1111/j.1748-1716.1979.tb06409.x. [DOI] [PubMed] [Google Scholar]
- Wautier J. L., Paton R. C., Wautier M. P., Pintigny D., Abadie E., Passa P., Caen J. P. Increased adhesion of erythrocytes to endothelial cells in diabetes mellitus and its relation to vascular complications. N Engl J Med. 1981 Jul 30;305(5):237–242. doi: 10.1056/NEJM198107303050501. [DOI] [PubMed] [Google Scholar]
- Williamson T. H., Harris A. Ocular blood flow measurement. Br J Ophthalmol. 1994 Dec;78(12):939–945. doi: 10.1136/bjo.78.12.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida A., Feke G. T., Morales-Stoppello J., Collas G. D., Goger D. G., McMeel J. W. Retinal blood flow alterations during progression of diabetic retinopathy. Arch Ophthalmol. 1983 Feb;101(2):225–227. doi: 10.1001/archopht.1983.01040010227008. [DOI] [PubMed] [Google Scholar]
- Zetterström B. Results of photocoagulation in diabetic retinopathy after long-term follow-up. Acta Ophthalmol (Copenh) 1980 Jun;58(3):361–368. doi: 10.1111/j.1755-3768.1980.tb05735.x. [DOI] [PubMed] [Google Scholar]

