Abstract
BACKGROUND/AIMS—Nitric oxide donors reduce intraocular pressure. Human trabecular cells in culture were examined for their nitric oxide production in response to hydraulic pressure. METHODS—Human trabecular cells were cultured from trabeculum tissue fragments excised during trabeculectomy and exposed to hydraulic pressure change in a culture flask connected to a glass syringe. The pressure was exerted by automatic infusion of the piston of the syringe and monitored by a pressure gauge. The intracellular nitric oxide level was measured in real time with a nitric oxide binding fluorescent dye, diaminofluorescein-2. RESULTS—Intracellular nitric oxide levels in cultured trabecular cells showed spontaneous fluctuation during 400 seconds of observation. Peak levels of intracellular nitric oxide were significantly higher at hydraulic pressure of 30, 40, and 50 mm Hg, compared with 0 and 25 mm Hg (p<0.0001, one way ANOVA, and p<0.05, Tukey-Kramer test). The fluctuation was completely abolished by the presence of N-methyl-L-arginine (L-NMMA), a nitric oxide synthase inhibitor. The cultured trabecular cells were shown by immunohistochemistry to express brain nitric oxide synthase (bNOS). CONCLUSION—Higher levels of hydraulic pressure enhanced basal production of nitric oxide in human trabecular cells. Nitric oxide would be a physiological mediator in the regulation of intraocular pressure.
Full Text
The Full Text of this article is available as a PDF (160.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarado J. A., Wood I., Polansky J. R. Human trabecular cells. II. Growth pattern and ultrastructural characteristics. Invest Ophthalmol Vis Sci. 1982 Oct;23(4):464–478. [PubMed] [Google Scholar]
- Awolesi M. A., Sessa W. C., Sumpio B. E. Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells. J Clin Invest. 1995 Sep;96(3):1449–1454. doi: 10.1172/JCI118181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ayajiki K., Kindermann M., Hecker M., Fleming I., Busse R. Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ Res. 1996 May;78(5):750–758. doi: 10.1161/01.res.78.5.750. [DOI] [PubMed] [Google Scholar]
- Becquet F., Courtois Y., Goureau O. Nitric oxide in the eye: multifaceted roles and diverse outcomes. Surv Ophthalmol. 1997 Jul-Aug;42(1):71–82. doi: 10.1016/s0039-6257(97)84043-x. [DOI] [PubMed] [Google Scholar]
- Behar-Cohen F. F., Goureau O., D'Hermies F., Courtois Y. Decreased intraocular pressure induced by nitric oxide donors is correlated to nitrite production in the rabbit eye. Invest Ophthalmol Vis Sci. 1996 Jul;37(8):1711–1715. [PubMed] [Google Scholar]
- Bredt D. S., Snyder S. H. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–195. doi: 10.1146/annurev.bi.63.070194.001135. [DOI] [PubMed] [Google Scholar]
- Corson M. A., James N. L., Latta S. E., Nerem R. M., Berk B. C., Harrison D. G. Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress. Circ Res. 1996 Nov;79(5):984–991. doi: 10.1161/01.res.79.5.984. [DOI] [PubMed] [Google Scholar]
- Das P., Schurman D. J., Smith R. L. Nitric oxide and G proteins mediate the response of bovine articular chondrocytes to fluid-induced shear. J Orthop Res. 1997 Jan;15(1):87–93. doi: 10.1002/jor.1100150113. [DOI] [PubMed] [Google Scholar]
- Davies P. F. Flow-mediated endothelial mechanotransduction. Physiol Rev. 1995 Jul;75(3):519–560. doi: 10.1152/physrev.1995.75.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geyer O., Podos S. M., Mittag T. Nitric oxide synthase activity in tissues of the bovine eye. Graefes Arch Clin Exp Ophthalmol. 1997 Dec;235(12):786–793. doi: 10.1007/BF02332864. [DOI] [PubMed] [Google Scholar]
- Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
- Grierson I., Robins E., Unger W., Millar L., Ahmed A. The cells of the bovine outflow system in tissue culture. Exp Eye Res. 1985 Jan;40(1):35–46. doi: 10.1016/0014-4835(85)90106-x. [DOI] [PubMed] [Google Scholar]
- Hishikawa K., Lüscher T. F. Pulsatile stretch stimulates superoxide production in human aortic endothelial cells. Circulation. 1997 Nov 18;96(10):3610–3616. doi: 10.1161/01.cir.96.10.3610. [DOI] [PubMed] [Google Scholar]
- Hishikawa K., Nakaki T., Suzuki H., Saruta T., Kato R. Transmural pressure inhibits nitric oxide release from human endothelial cells. Eur J Pharmacol. 1992 May 14;215(2-3):329–331. doi: 10.1016/0014-2999(92)90051-5. [DOI] [PubMed] [Google Scholar]
- Hutcheson I. R., Griffith T. M. Release of endothelium-derived relaxing factor is modulated both by frequency and amplitude of pulsatile flow. Am J Physiol. 1991 Jul;261(1 Pt 2):H257–H262. doi: 10.1152/ajpheart.1991.261.1.H257. [DOI] [PubMed] [Google Scholar]
- Johnson D. L., McAllister T. N., Frangos J. A. Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am J Physiol. 1996 Jul;271(1 Pt 1):E205–E208. doi: 10.1152/ajpendo.1996.271.1.E205. [DOI] [PubMed] [Google Scholar]
- Kojima H., Nakatsubo N., Kikuchi K., Kawahara S., Kirino Y., Nagoshi H., Hirata Y., Nagano T. Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem. 1998 Jul 1;70(13):2446–2453. doi: 10.1021/ac9801723. [DOI] [PubMed] [Google Scholar]
- Kojima H., Nakatsubo N., Kikuchi K., Urano Y., Higuchi T., Tanaka J., Kudo Y., Nagano T. Direct evidence of NO production in rat hippocampus and cortex using a new fluorescent indicator: DAF-2 DA. Neuroreport. 1998 Oct 26;9(15):3345–3348. doi: 10.1097/00001756-199810260-00001. [DOI] [PubMed] [Google Scholar]
- Kojima H., Sakurai K., Kikuchi K., Kawahara S., Kirino Y., Nagoshi H., Hirata Y., Nagano T. Development of a fluorescent indicator for nitric oxide based on the fluorescein chromophore. Chem Pharm Bull (Tokyo) 1998 Feb;46(2):373–375. doi: 10.1248/cpb.46.373. [DOI] [PubMed] [Google Scholar]
- Kojima S., Sugiyama T., Shimizu K., Ishida O., Nakajima M., Azuma I., Goh Y. [Effect of a nitric oxide donor on intraocular pressure]. Nippon Ganka Gakkai Zasshi. 1996 Mar;100(3):181–186. [PubMed] [Google Scholar]
- Kuchan M. J., Frangos J. A. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Physiol. 1994 Mar;266(3 Pt 1):C628–C636. doi: 10.1152/ajpcell.1994.266.3.C628. [DOI] [PubMed] [Google Scholar]
- Lee D. A., Frean S. P., Lees P., Bader D. L. Dynamic mechanical compression influences nitric oxide production by articular chondrocytes seeded in agarose. Biochem Biophys Res Commun. 1998 Oct 20;251(2):580–585. doi: 10.1006/bbrc.1998.9520. [DOI] [PubMed] [Google Scholar]
- Matsuo T., Matsuo N. Intracellular calcium response to hydraulic pressure in human trabecular cells. Br J Ophthalmol. 1996 Jun;80(6):561–566. doi: 10.1136/bjo.80.6.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuo T., Uchida H., Matsuo N. Bovine and porcine trabecular cells produce prostaglandin F2 alpha in response to cyclic mechanical stretching. Jpn J Ophthalmol. 1996;40(3):289–296. [PubMed] [Google Scholar]
- Mitton K. P., Tumminia S. J., Arora J., Zelenka P., Epstein D. L., Russell P. Transient loss of alphaB-crystallin: an early cellular response to mechanical stretch. Biochem Biophys Res Commun. 1997 Jun 9;235(1):69–73. doi: 10.1006/bbrc.1997.6737. [DOI] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- Nakatsubo N., Kojima H., Kikuchi K., Nagoshi H., Hirata Y., Maeda D., Imai Y., Irimura T., Nagano T. Direct evidence of nitric oxide production from bovine aortic endothelial cells using new fluorescence indicators: diaminofluoresceins. FEBS Lett. 1998 May 8;427(2):263–266. doi: 10.1016/s0014-5793(98)00440-2. [DOI] [PubMed] [Google Scholar]
- Nathanson J. A. Direct application of a guanylate cyclase activator lowers intraocular pressure. Eur J Pharmacol. 1988 Feb 16;147(1):155–156. doi: 10.1016/0014-2999(88)90648-6. [DOI] [PubMed] [Google Scholar]
- Nathanson J. A., McKee M. Alterations of ocular nitric oxide synthase in human glaucoma. Invest Ophthalmol Vis Sci. 1995 Aug;36(9):1774–1784. [PubMed] [Google Scholar]
- Nathanson J. A., McKee M. Identification of an extensive system of nitric oxide-producing cells in the ciliary muscle and outflow pathway of the human eye. Invest Ophthalmol Vis Sci. 1995 Aug;36(9):1765–1773. [PubMed] [Google Scholar]
- Nathanson J. A. Nitrovasodilators as a new class of ocular hypotensive agents. J Pharmacol Exp Ther. 1992 Mar;260(3):956–965. [PubMed] [Google Scholar]
- Noris M., Morigi M., Donadelli R., Aiello S., Foppolo M., Todeschini M., Orisio S., Remuzzi G., Remuzzi A. Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ Res. 1995 Apr;76(4):536–543. doi: 10.1161/01.res.76.4.536. [DOI] [PubMed] [Google Scholar]
- Okada Y., Matsuo T., Ohtsuki H. Bovine trabecular cells produce TIMP-1 and MMP-2 in response to mechanical stretching. Jpn J Ophthalmol. 1998 Mar-Apr;42(2):90–94. doi: 10.1016/s0021-5155(97)00129-9. [DOI] [PubMed] [Google Scholar]
- Pitsillides A. A., Rawlinson S. C., Suswillo R. F., Bourrin S., Zaman G., Lanyon L. E. Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB J. 1995 Dec;9(15):1614–1622. doi: 10.1096/fasebj.9.15.8529841. [DOI] [PubMed] [Google Scholar]
- Polansky J. R., Weinreb R. N., Baxter J. D., Alvarado J. Human trabecular cells. I. Establishment in tissue culture and growth characteristics. Invest Ophthalmol Vis Sci. 1979 Oct;18(10):1043–1049. [PubMed] [Google Scholar]
- Rubanyi G. M., Romero J. C., Vanhoutte P. M. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol. 1986 Jun;250(6 Pt 2):H1145–H1149. doi: 10.1152/ajpheart.1986.250.6.H1145. [DOI] [PubMed] [Google Scholar]
- Salvemini D., Misko T. P., Masferrer J. L., Seibert K., Currie M. G., Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7240–7244. doi: 10.1073/pnas.90.15.7240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato Y., Matsuo T., Ohtsuki H. A novel gene (oculomedin) induced by mechanical stretching in human trabecular cells of the eye. Biochem Biophys Res Commun. 1999 Jun 7;259(2):349–351. doi: 10.1006/bbrc.1999.0797. [DOI] [PubMed] [Google Scholar]
- Schuman J. S., Erickson K., Nathanson J. A. Nitrovasodilator effects on intraocular pressure and outflow facility in monkeys. Exp Eye Res. 1994 Jan;58(1):99–105. doi: 10.1006/exer.1994.1199. [DOI] [PubMed] [Google Scholar]
- Smalt R., Mitchell F. T., Howard R. L., Chambers T. J. Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain. Am J Physiol. 1997 Oct;273(4 Pt 1):E751–E758. doi: 10.1152/ajpendo.1997.273.4.E751. [DOI] [PubMed] [Google Scholar]
- Tripathi B. J., Tripathi R. C. Neural crest origin of human trabecular meshwork and its implications for the pathogenesis of glaucoma. Am J Ophthalmol. 1989 Jun 15;107(6):583–590. doi: 10.1016/0002-9394(89)90253-5. [DOI] [PubMed] [Google Scholar]
- Tripathi R. C., Tripathi B. J. Human trabecular endothelium, corneal endothelium, keratocytes, and scleral fibroblasts in primary cell culture. A comparative study of growth characteristics, morphology, and phagocytic activity by light and scanning electron microscopy. Exp Eye Res. 1982 Dec;35(6):611–624. doi: 10.1016/s0014-4835(82)80074-2. [DOI] [PubMed] [Google Scholar]
- Tumminia S. J., Mitton K. P., Arora J., Zelenka P., Epstein D. L., Russell P. Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 1998 Jul;39(8):1361–1371. [PubMed] [Google Scholar]
- Wang R. F., Podos S. M. Effect of the topical application of nitroglycerin on intraocular pressure in normal and glaucomatous monkeys. Exp Eye Res. 1995 Mar;60(3):337–339. doi: 10.1016/s0014-4835(05)80116-2. [DOI] [PubMed] [Google Scholar]
- Wiederholt M., Sturm A., Lepple-Wienhues A. Relaxation of trabecular meshwork and ciliary muscle by release of nitric oxide. Invest Ophthalmol Vis Sci. 1994 Apr;35(5):2515–2520. [PubMed] [Google Scholar]