Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 2001 Oct;85(10):1252–1259. doi: 10.1136/bjo.85.10.1252

A hypothesis to explain ganglion cell death caused by vascular insults at the optic nerve head: possible implication for the treatment of glaucoma

N OSBORNE 1, J MELENA 1, G CHIDLOW 1, J WOOD 1
PMCID: PMC1723727  PMID: 11567974

Full Text

The Full Text of this article is available as a PDF (801.5 KB).

Figure 1  .

Figure 1  

Possible causes of ganglion cell death in glaucoma. It is suggested that activation of sufficient risk factors causes the quality of blood supply in the optic nerve head to be affected. As a result, the nutritional supply to the optic nerve head is slowly compromised (oligaemia/hypoxia) particularly affecting astrocytes, microglia, and ganglion cell axons. Even the central retinal artery/vein may become slightly affected. Such insults eventually lead to the death of ganglion cells as depicted and detailed in Figures 2 and 3. One may also envisage other modes of stimulating ganglion cell death in glaucoma (lighter blue boxes) where the vascular system does not have a direct role. Some of these possibilities may also be linked to certain risk factors, but these are not indicated.

Figure 2  .

Figure 2  

A hypothesis to explain ganglion cell death in glaucoma. Various components in the optic nerve head may be affected by oligaemia/hypoxia as a result of an alteration in the microcirculation (see Fig 1). While the ganglion cell axon may be affected in the initial stages of the insult, the whole of the cell will eventually suffer (exist at a lower homeostatic state) with glutamate particularly being "non-physiologically" released into the extracellular space (Fig 3). Astrocytes and microglial cells are also likely to release a variety of substances into the extracellular space after an undefined duration of insult. Some of these substances may have "protective" properties while others will have adverse effects on neurons. Moreover, increased levels of glutamate in the extracellular space are potentially toxic to many retinal cells. Müller cells will as a consequence become particularly active in an attempt to maintain physiological levels of extracellular neurotransmitters. However, the excessive demands placed on Müller cells will eventually lead to them becoming inefficient. This will result in a slow but gradual rise in the level of glutamate and other neurotransmitters (for example, GABA) in the extracellular space. The ganglion cells, being at a lower homeostatic status than other retinal cell types will potentially, therefore, be more susceptible to this extracellular rise of neurotransmitters. It is proposed that at a certain point, glutamate will overexcite ganglion cells to initiate a dying process. It is also hypothesised that the variability in the death rate of individual ganglion cells will depend on the degree of this overexcitement, which is dependent in part on the number of excitatory and inhibitory receptors associated with the neuron (and also upon a rise in the extracellular levels of neurotransmitters). Activation of inhibitory GABA receptors, for example, will hyperpolarise the cell and this will tend to counteract the overexcitation.

Figure 3  .

Figure 3  

Proposed stages for ganglion cell death in glaucoma (see Figure 2 for details).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi K., Kashii S., Masai H., Ueda M., Morizane C., Kaneda K., Kume T., Akaike A., Honda Y. Mechanism of the pathogenesis of glutamate neurotoxicity in retinal ischemia. Graefes Arch Clin Exp Ophthalmol. 1998 Oct;236(10):766–774. doi: 10.1007/s004170050156. [DOI] [PubMed] [Google Scholar]
  2. Anderson D. R. Introductory comments on blood flow autoregulation in the optic nerve head and vascular risk factors in glaucoma. Surv Ophthalmol. 1999 Jun;43 (Suppl 1):S5–S9. doi: 10.1016/s0039-6257(99)00046-6. [DOI] [PubMed] [Google Scholar]
  3. Andrews R. M., Griffiths P. G., Johnson M. A., Turnbull D. M. Histochemical localisation of mitochondrial enzyme activity in human optic nerve and retina. Br J Ophthalmol. 1999 Feb;83(2):231–235. doi: 10.1136/bjo.83.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baldridge W. H. Optical recordings of the effects of cholinergic ligands on neurons in the ganglion cell layer of mammalian retina. J Neurosci. 1996 Aug 15;16(16):5060–5072. doi: 10.1523/JNEUROSCI.16-16-05060.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Banin E., Berenshtein E., Kitrossky N., Pe'er J., Chevion M. Gallium-desferrioxamine protects the cat retina against injury after ischemia and reperfusion. Free Radic Biol Med. 2000 Feb 1;28(3):315–323. doi: 10.1016/s0891-5849(99)00227-0. [DOI] [PubMed] [Google Scholar]
  6. Barañano D. E., Ferris C. D., Snyder S. H. Atypical neural messengers. Trends Neurosci. 2001 Feb;24(2):99–106. doi: 10.1016/s0166-2236(00)01716-1. [DOI] [PubMed] [Google Scholar]
  7. Bianchi-Marzoli S., Rizzo J. F., 3rd, Brancato R., Lessell S. Quantitative analysis of optic disc cupping in compressive optic neuropathy. Ophthalmology. 1995 Mar;102(3):436–440. doi: 10.1016/s0161-6420(95)31003-2. [DOI] [PubMed] [Google Scholar]
  8. Bonomi L., Marchini G., Marraffa M., Bernardi P., Morbio R., Varotto A. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology. 2000 Jul;107(7):1287–1293. doi: 10.1016/s0161-6420(00)00138-x. [DOI] [PubMed] [Google Scholar]
  9. Braas K. M., Zarbin M. A., Snyder S. H. Endogenous adenosine and adenosine receptors localized to ganglion cells of the retina. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3906–3910. doi: 10.1073/pnas.84.11.3906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Broadway D. C., Drance S. M. Glaucoma and vasospasm. Br J Ophthalmol. 1998 Aug;82(8):862–870. doi: 10.1136/bjo.82.8.862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Béchetoille A. Vascular risk factors in glaucoma. Curr Opin Ophthalmol. 1996 Apr;7(2):39–43. [PubMed] [Google Scholar]
  12. Cao W., Zaharia M., Drumheller A., Casanova C., Lafond G., Brunette J. R., Jolicoeur F. B. Effects of dextromethorphan on ischemia induced electroretinogram changes in rabbit. Curr Eye Res. 1994 Feb;13(2):97–102. doi: 10.3109/02713689409042403. [DOI] [PubMed] [Google Scholar]
  13. Caprioli J., Sears M., Miller J. M. Patterns of early visual field loss in open-angle glaucoma. Am J Ophthalmol. 1987 Apr 15;103(4):512–517. doi: 10.1016/s0002-9394(14)74273-4. [DOI] [PubMed] [Google Scholar]
  14. Carter-Dawson L., Shen F., Harwerth R. S., Smith E. L., 3rd, Crawford M. L., Chuang A. Glutamine immunoreactivity in Müller cells of monkey eyes with experimental glaucoma. Exp Eye Res. 1998 May;66(5):537–545. doi: 10.1006/exer.1997.0447. [DOI] [PubMed] [Google Scholar]
  15. Chao H. M., Chidlow G., Melena J., Wood J. P., Osborne N. N. An investigation into the potential mechanisms underlying the neuroprotective effect of clonidine in the retina. Brain Res. 2000 Sep 15;877(1):47–57. doi: 10.1016/s0006-8993(00)02592-0. [DOI] [PubMed] [Google Scholar]
  16. Chidlow G., Melena J., Osborne N. N. Betaxolol, a beta(1)-adrenoceptor antagonist, reduces Na(+) influx into cortical synaptosomes by direct interaction with Na(+) channels: comparison with other beta-adrenoceptor antagonists. Br J Pharmacol. 2000 Jun;130(4):759–766. doi: 10.1038/sj.bjp.0703369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Chung H. S., Harris A., Kagemann L., Martin B. Peripapillary retinal blood flow in normal tension glaucoma. Br J Ophthalmol. 1999 Apr;83(4):466–469. doi: 10.1136/bjo.83.4.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Clarke G., Collins R. A., Leavitt B. R., Andrews D. F., Hayden M. R., Lumsden C. J., McInnes R. R. A one-hit model of cell death in inherited neuronal degenerations. Nature. 2000 Jul 13;406(6792):195–199. doi: 10.1038/35018098. [DOI] [PubMed] [Google Scholar]
  19. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol. 1998 Oct;126(4):487–497. doi: 10.1016/s0002-9394(98)00223-2. [DOI] [PubMed] [Google Scholar]
  20. Crosson C. E., Willis J. A., Potter D. E. Effect of the calcium antagonist, nifedipine, on ischemic retinal dysfunction. J Ocul Pharmacol. 1990 Winter;6(4):293–299. doi: 10.1089/jop.1990.6.293. [DOI] [PubMed] [Google Scholar]
  21. Danesh-Meyer H. V., Savino P. J., Sergott R. C. The prevalence of cupping in end-stage arteritic and nonarteritic anterior ischemic optic neuropathy. Ophthalmology. 2001 Mar;108(3):593–598. doi: 10.1016/s0161-6420(00)00602-3. [DOI] [PubMed] [Google Scholar]
  22. Douglas G. R. Pathogenetic mechanisms of glaucoma not related to intraocular pressure. Curr Opin Ophthalmol. 1998 Apr;9(2):34–38. doi: 10.1097/00055735-199804000-00007. [DOI] [PubMed] [Google Scholar]
  23. Dreyer E. B., Zurakowski D., Schumer R. A., Podos S. M., Lipton S. A. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol. 1996 Mar;114(3):299–305. doi: 10.1001/archopht.1996.01100130295012. [DOI] [PubMed] [Google Scholar]
  24. Evans D. W., Harris A., Garrett M., Chung H. S., Kagemann L. Glaucoma patients demonstrate faulty autoregulation of ocular blood flow during posture change. Br J Ophthalmol. 1999 Jul;83(7):809–813. doi: 10.1136/bjo.83.7.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Flammer J., Orgül S. Optic nerve blood-flow abnormalities in glaucoma. Prog Retin Eye Res. 1998 Apr;17(2):267–289. doi: 10.1016/s1350-9462(97)00006-2. [DOI] [PubMed] [Google Scholar]
  26. Garcia-Valenzuela E., Shareef S., Walsh J., Sharma S. C. Programmed cell death of retinal ganglion cells during experimental glaucoma. Exp Eye Res. 1995 Jul;61(1):33–44. doi: 10.1016/s0014-4835(95)80056-5. [DOI] [PubMed] [Google Scholar]
  27. Gehlbach P., Purple R. L. Enhancement of retinal recovery by conjugated deferoxamine after ischemia-reperfusion. Invest Ophthalmol Vis Sci. 1994 Feb;35(2):669–676. [PubMed] [Google Scholar]
  28. Geijer C., Bill A. Effects of raised intraocular pressure on retinal, prelaminar, laminar, and retrolaminar optic nerve blood flow in monkeys. Invest Ophthalmol Vis Sci. 1979 Oct;18(10):1030–1042. [PubMed] [Google Scholar]
  29. Glovinsky Y., Quigley H. A., Dunkelberger G. R. Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest Ophthalmol Vis Sci. 1991 Mar;32(3):484–491. [PubMed] [Google Scholar]
  30. Grunwald J. E., Piltz J., Hariprasad S. M., DuPont J. Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci. 1998 Nov;39(12):2329–2336. [PubMed] [Google Scholar]
  31. Gupta L. Y., Marmor M. F. Mannitol, dextromethorphan, and catalase minimize ischemic damage to retinal pigment epithelium and retina. Arch Ophthalmol. 1993 Mar;111(3):384–388. doi: 10.1001/archopht.1993.01090030104049. [DOI] [PubMed] [Google Scholar]
  32. Gupta N., Weinreb R. N. New definitions of glaucoma. Curr Opin Ophthalmol. 1997 Apr;8(2):38–41. doi: 10.1097/00055735-199704000-00007. [DOI] [PubMed] [Google Scholar]
  33. Harris A., Ciulla T. A., Kagemann L., Zarfati D., Martin B. Vasoprotection as neuroprotection for the optic nerve. Eye (Lond) 2000 Jun;14(Pt 3B):473–475. doi: 10.1038/eye.2000.133. [DOI] [PubMed] [Google Scholar]
  34. Hart W. M., Jr, Becker B. The onset and evolution of glaucomatous visual field defects. Ophthalmology. 1982 Mar;89(3):268–279. doi: 10.1016/s0161-6420(82)34798-3. [DOI] [PubMed] [Google Scholar]
  35. Hayreh S. S. Factors influencing blood flow in the optic nerve head. J Glaucoma. 1997 Dec;6(6):412–425. [PubMed] [Google Scholar]
  36. Hayreh S. S. Inter-individual variation in blood supply of the optic nerve head. Its importance in various ischemic disorders of the optic nerve head, and glaucoma, low-tension glaucoma and allied disorders. Doc Ophthalmol. 1985 Apr 30;59(3):217–246. doi: 10.1007/BF00159262. [DOI] [PubMed] [Google Scholar]
  37. Hayreh S. S. Pathogenesis of cupping of the optic disc. Br J Ophthalmol. 1974 Oct;58(10):863–876. doi: 10.1136/bjo.58.10.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Hayreh S. S., Podhajsky P., Zimmerman M. B. Role of nocturnal arterial hypotension in optic nerve head ischemic disorders. Ophthalmologica. 1999;213(2):76–96. doi: 10.1159/000027399. [DOI] [PubMed] [Google Scholar]
  39. Hernandez M. R., Pena J. D. The optic nerve head in glaucomatous optic neuropathy. Arch Ophthalmol. 1997 Mar;115(3):389–395. doi: 10.1001/archopht.1997.01100150391013. [DOI] [PubMed] [Google Scholar]
  40. Hernandez M. R. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res. 2000 May;19(3):297–321. doi: 10.1016/s1350-9462(99)00017-8. [DOI] [PubMed] [Google Scholar]
  41. Hitchings R. A. Chronic glaucoma: definition of the phenotype. Eye (Lond) 2000 Jun;14(Pt 3B):419–421. doi: 10.1038/eye.2000.125. [DOI] [PubMed] [Google Scholar]
  42. Innocenti B., Parpura V., Haydon P. G. Imaging extracellular waves of glutamate during calcium signaling in cultured astrocytes. J Neurosci. 2000 Mar 1;20(5):1800–1808. doi: 10.1523/JNEUROSCI.20-05-01800.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ishida A. T., Cohen B. N. GABA-activated whole-cell currents in isolated retinal ganglion cells. J Neurophysiol. 1988 Aug;60(2):381–396. doi: 10.1152/jn.1988.60.2.381. [DOI] [PubMed] [Google Scholar]
  44. Johnson E. C., Deppmeier L. M., Wentzien S. K., Hsu I., Morrison J. C. Chronology of optic nerve head and retinal responses to elevated intraocular pressure. Invest Ophthalmol Vis Sci. 2000 Feb;41(2):431–442. [PubMed] [Google Scholar]
  45. Jonas J. B., Fernández M. C., Stürmer J. Pattern of glaucomatous neuroretinal rim loss. Ophthalmology. 1993 Jan;100(1):63–68. doi: 10.1016/s0161-6420(13)31694-7. [DOI] [PubMed] [Google Scholar]
  46. Joo C. K., Choi J. S., Ko H. W., Park K. Y., Sohn S., Chun M. H., Oh Y. J., Gwag B. J. Necrosis and apoptosis after retinal ischemia: involvement of NMDA-mediated excitotoxicity and p53. Invest Ophthalmol Vis Sci. 1999 Mar;40(3):713–720. [PubMed] [Google Scholar]
  47. Kalloniatis M., Tomisich G. Amino acid neurochemistry of the vertebrate retina. Prog Retin Eye Res. 1999 Nov;18(6):811–866. doi: 10.1016/s1350-9462(98)00036-6. [DOI] [PubMed] [Google Scholar]
  48. Kerr J., Nelson P., O'Brien C. A comparison of ocular blood flow in untreated primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol. 1998 Jul;126(1):42–51. doi: 10.1016/s0002-9394(98)00074-9. [DOI] [PubMed] [Google Scholar]
  49. Kiel J. W., van Heuven W. A. Ocular perfusion pressure and choroidal blood flow in the rabbit. Invest Ophthalmol Vis Sci. 1995 Mar;36(3):579–585. [PubMed] [Google Scholar]
  50. Klein B. E., Klein R., Sponsel W. E., Franke T., Cantor L. B., Martone J., Menage M. J. Prevalence of glaucoma. The Beaver Dam Eye Study. Ophthalmology. 1992 Oct;99(10):1499–1504. doi: 10.1016/s0161-6420(92)31774-9. [DOI] [PubMed] [Google Scholar]
  51. Kocher M. Metabolic and hemodynamic activation of postischemic rat brain by cortical spreading depression. J Cereb Blood Flow Metab. 1990 Jul;10(4):564–571. doi: 10.1038/jcbfm.1990.99. [DOI] [PubMed] [Google Scholar]
  52. Lam T. T., Siew E., Chu R., Tso M. O. Ameliorative effect of MK-801 on retinal ischemia. J Ocul Pharmacol Ther. 1997 Apr;13(2):129–137. doi: 10.1089/jop.1997.13.129. [DOI] [PubMed] [Google Scholar]
  53. Laquis S., Chaudhary P., Sharma S. C. The patterns of retinal ganglion cell death in hypertensive eyes. Brain Res. 1998 Feb 16;784(1-2):100–104. doi: 10.1016/s0006-8993(97)01189-x. [DOI] [PubMed] [Google Scholar]
  54. Larsen A. K., Osborne N. N. Involvement of adenosine in retinal ischemia. Studies on the rat. Invest Ophthalmol Vis Sci. 1996 Dec;37(13):2603–2611. [PubMed] [Google Scholar]
  55. Liu B., Neufeld A. H. Expression of nitric oxide synthase-2 (NOS-2) in reactive astrocytes of the human glaucomatous optic nerve head. Glia. 2000 Apr;30(2):178–186. doi: 10.1002/(sici)1098-1136(200004)30:2<178::aid-glia7>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  56. Martins-Ferreira H., Nedergaard M., Nicholson C. Perspectives on spreading depression. Brain Res Brain Res Rev. 2000 Apr;32(1):215–234. doi: 10.1016/s0165-0173(99)00083-1. [DOI] [PubMed] [Google Scholar]
  57. Melena J., Wood J. P., Osborne N. N. Betaxolol, a beta1-adrenoceptor antagonist, has an affinity for L-type Ca2+ channels. Eur J Pharmacol. 1999 Aug 13;378(3):317–322. doi: 10.1016/s0014-2999(99)00459-8. [DOI] [PubMed] [Google Scholar]
  58. Miettinen S., Fusco F. R., Yrjänheikki J., Keinänen R., Hirvonen T., Roivainen R., Närhi M., Hökfelt T., Koistinaho J. Spreading depression and focal brain ischemia induce cyclooxygenase-2 in cortical neurons through N-methyl-D-aspartic acid-receptors and phospholipase A2. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6500–6505. doi: 10.1073/pnas.94.12.6500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Morgan J. E. Optic nerve head structure in glaucoma: astrocytes as mediators of axonal damage. Eye (Lond) 2000 Jun;14(Pt 3B):437–444. doi: 10.1038/eye.2000.128. [DOI] [PubMed] [Google Scholar]
  60. Morrison J. C., Moore C. G., Deppmeier L. M., Gold B. G., Meshul C. K., Johnson E. C. A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res. 1997 Jan;64(1):85–96. doi: 10.1006/exer.1996.0184. [DOI] [PubMed] [Google Scholar]
  61. Müller F., Boos R., Wässle H. Actions of GABAergic ligands on brisk ganglion cells in the cat retina. Vis Neurosci. 1992 Sep-Oct;9(3-4):415–425. doi: 10.1017/s0952523800010828. [DOI] [PubMed] [Google Scholar]
  62. Nedergaard M. Spreading depression as a contributor to ischemic brain damage. Adv Neurol. 1996;71:75–84. [PubMed] [Google Scholar]
  63. Neufeld A. H. Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. Arch Ophthalmol. 1999 Aug;117(8):1050–1056. doi: 10.1001/archopht.117.8.1050. [DOI] [PubMed] [Google Scholar]
  64. Neufeld A. H., Sawada A., Becker B. Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9944–9948. doi: 10.1073/pnas.96.17.9944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Newman E. A. Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci. 2001 Apr 1;21(7):2215–2223. doi: 10.1523/JNEUROSCI.21-07-02215.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Newman E., Reichenbach A. The Müller cell: a functional element of the retina. Trends Neurosci. 1996 Aug;19(8):307–312. doi: 10.1016/0166-2236(96)10040-0. [DOI] [PubMed] [Google Scholar]
  67. Nickells R. W. Retinal ganglion cell death in glaucoma: the how, the why, and the maybe. J Glaucoma. 1996 Oct;5(5):345–356. [PubMed] [Google Scholar]
  68. Obeidat A. S., Andrew R. D. Spreading depression determines acute cellular damage in the hippocampal slice during oxygen/glucose deprivation. Eur J Neurosci. 1998 Nov;10(11):3451–3461. doi: 10.1046/j.1460-9568.1998.00358.x. [DOI] [PubMed] [Google Scholar]
  69. Ophir A., Berenshtein E., Kitrossky N., Averbukh E. Protection of the transiently ischemic cat retina by zinc-desferrioxamine. Invest Ophthalmol Vis Sci. 1994 Mar;35(3):1212–1222. [PubMed] [Google Scholar]
  70. Orgül S., Gass A., Flammer J. Optic disc cupping in arteritic anterior ischemic optic neuropathy. Ophthalmologica. 1994;208(6):336–338. doi: 10.1159/000310534. [DOI] [PubMed] [Google Scholar]
  71. Orgül S., Gugleta K., Flammer J. Physiology of perfusion as it relates to the optic nerve head. Surv Ophthalmol. 1999 Jun;43 (Suppl 1):S17–S26. doi: 10.1016/s0039-6257(99)00009-0. [DOI] [PubMed] [Google Scholar]
  72. Ortiz R. G., Newman N. J., Manoukian S. V., Diesenhouse M. C., Lott M. T., Wallace D. C. Optic disk cupping and electrocardiographic abnormalities in an American pedigree with Leber's hereditary optic neuropathy. Am J Ophthalmol. 1992 May 15;113(5):561–566. doi: 10.1016/s0002-9394(14)74730-0. [DOI] [PubMed] [Google Scholar]
  73. Osborne N. N., DeSantis L., Bae J. H., Ugarte M., Wood J. P., Nash M. S., Chidlow G. Topically applied betaxolol attenuates NMDA-induced toxicity to ganglion cells and the effects of ischaemia to the retina. Exp Eye Res. 1999 Sep;69(3):331–342. doi: 10.1006/exer.1999.0706. [DOI] [PubMed] [Google Scholar]
  74. Osborne N. N. Memantine reduces alterations to the mammalian retina, in situ, induced by ischemia. Vis Neurosci. 1999 Jan-Feb;16(1):45–52. doi: 10.1017/s0952523899161017. [DOI] [PubMed] [Google Scholar]
  75. Osborne N. N., Ugarte M., Chao M., Chidlow G., Bae J. H., Wood J. P., Nash M. S. Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv Ophthalmol. 1999 Jun;43 (Suppl 1):S102–S128. doi: 10.1016/s0039-6257(99)00044-2. [DOI] [PubMed] [Google Scholar]
  76. Osborne N. N., Wood J. P., Chidlow G., Bae J. H., Melena J., Nash M. S. Ganglion cell death in glaucoma: what do we really know? Br J Ophthalmol. 1999 Aug;83(8):980–986. doi: 10.1136/bjo.83.8.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Park K. H., Tomita G., Liou S. Y., Kitazawa Y. Correlation between peripapillary atrophy and optic nerve damage in normal-tension glaucoma. Ophthalmology. 1996 Nov;103(11):1899–1906. doi: 10.1016/s0161-6420(96)30409-0. [DOI] [PubMed] [Google Scholar]
  78. Peachey N. S., Green D. J., Ripps H. Ocular ischemia and the effects of allopurinol on functional recovery in the retina of the arterially perfused cat eye. Invest Ophthalmol Vis Sci. 1993 Jan;34(1):58–65. [PubMed] [Google Scholar]
  79. Pederson J. E., Anderson D. R. The mode of progressive disc cupping in ocular hypertension and glaucoma. Arch Ophthalmol. 1980 Mar;98(3):490–495. doi: 10.1001/archopht.1980.01020030486010. [DOI] [PubMed] [Google Scholar]
  80. Pena J. D., Netland P. A., Vidal I., Dorr D. A., Rasky A., Hernandez M. R. Elastosis of the lamina cribrosa in glaucomatous optic neuropathy. Exp Eye Res. 1998 Nov;67(5):517–524. doi: 10.1006/exer.1998.0539. [DOI] [PubMed] [Google Scholar]
  81. Petty M. A., Wettstein J. G. White matter ischaemia. Brain Res Brain Res Rev. 1999 Dec;31(1):58–64. doi: 10.1016/s0165-0173(99)00025-9. [DOI] [PubMed] [Google Scholar]
  82. Prünte C., Orgül S., Flammer J. Abnormalities of microcirculation in glaucoma: facts and hints. Curr Opin Ophthalmol. 1998 Apr;9(2):50–55. doi: 10.1097/00055735-199804000-00010. [DOI] [PubMed] [Google Scholar]
  83. Quigley H. A., Katz J., Derick R. J., Gilbert D., Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology. 1992 Jan;99(1):19–28. doi: 10.1016/s0161-6420(92)32018-4. [DOI] [PubMed] [Google Scholar]
  84. Quigley H. A., McKinnon S. J., Zack D. J., Pease M. E., Kerrigan-Baumrind L. A., Kerrigan D. F., Mitchell R. S. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci. 2000 Oct;41(11):3460–3466. [PubMed] [Google Scholar]
  85. Quigley H. A. Neuronal death in glaucoma. Prog Retin Eye Res. 1999 Jan;18(1):39–57. doi: 10.1016/s1350-9462(98)00014-7. [DOI] [PubMed] [Google Scholar]
  86. Ridet J. L., Malhotra S. K., Privat A., Gage F. H. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci. 1997 Dec;20(12):570–577. doi: 10.1016/s0166-2236(97)01139-9. [DOI] [PubMed] [Google Scholar]
  87. Semsei I. On the nature of aging. Mech Ageing Dev. 2000 Aug 15;117(1-3):93–108. doi: 10.1016/s0047-6374(00)00147-0. [DOI] [PubMed] [Google Scholar]
  88. Shareef S. R., Garcia-Valenzuela E., Salierno A., Walsh J., Sharma S. C. Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res. 1995 Sep;61(3):379–382. doi: 10.1016/s0014-4835(05)80131-9. [DOI] [PubMed] [Google Scholar]
  89. Sheardown M. J. The triggering of spreading depression in the chicken retina: a pharmacological study. Brain Res. 1993 Apr 2;607(1-2):189–194. doi: 10.1016/0006-8993(93)91506-n. [DOI] [PubMed] [Google Scholar]
  90. Siesjö B. K. Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. J Neurosurg. 1992 Aug;77(2):169–184. doi: 10.3171/jns.1992.77.2.0169. [DOI] [PubMed] [Google Scholar]
  91. Sommer A. Glaucoma risk factors observed in the Baltimore Eye Survey. Curr Opin Ophthalmol. 1996 Apr;7(2):93–98. doi: 10.1097/00055735-199604000-00016. [DOI] [PubMed] [Google Scholar]
  92. Sommer A. Intraocular pressure and glaucoma. Am J Ophthalmol. 1989 Feb 15;107(2):186–188. doi: 10.1016/0002-9394(89)90221-3. [DOI] [PubMed] [Google Scholar]
  93. Sommer A., Katz J., Quigley H. A., Miller N. R., Robin A. L., Richter R. C., Witt K. A. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991 Jan;109(1):77–83. doi: 10.1001/archopht.1991.01080010079037. [DOI] [PubMed] [Google Scholar]
  94. Sommer A., Miller N. R., Pollack I., Maumenee A. E., George T. The nerve fiber layer in the diagnosis of glaucoma. Arch Ophthalmol. 1977 Dec;95(12):2149–2156. doi: 10.1001/archopht.1977.04450120055003. [DOI] [PubMed] [Google Scholar]
  95. Sommer A., Pollack I., Maumenee A. E. Optic disc parameters and onset of glaucomatous field loss. I. Methods and progressive changes in disc morphology. Arch Ophthalmol. 1979 Aug;97(8):1444–1448. doi: 10.1001/archopht.1979.01020020106002. [DOI] [PubMed] [Google Scholar]
  96. Streit W. J., Walter S. A., Pennell N. A. Reactive microgliosis. Prog Neurobiol. 1999 Apr;57(6):563–581. doi: 10.1016/s0301-0082(98)00069-0. [DOI] [PubMed] [Google Scholar]
  97. Stys P. K. Ions, channels, and transporters involved in anoxic injury of central nervous system white matter. Adv Neurol. 1996;71:153–166. [PubMed] [Google Scholar]
  98. Stys P. K., Waxman S. G., Ransom B. R. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. J Neurosci. 1992 Feb;12(2):430–439. doi: 10.1523/JNEUROSCI.12-02-00430.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Swanson R. A., Farrell K., Stein B. A. Astrocyte energetics, function, and death under conditions of incomplete ischemia: a mechanism of glial death in the penumbra. Glia. 1997 Sep;21(1):142–153. doi: 10.1002/(sici)1098-1136(199709)21:1<142::aid-glia16>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  100. Tanihara H., Hangai M., Sawaguchi S., Abe H., Kageyama M., Nakazawa F., Shirasawa E., Honda Y. Up-regulation of glial fibrillary acidic protein in the retina of primate eyes with experimental glaucoma. Arch Ophthalmol. 1997 Jun;115(6):752–756. doi: 10.1001/archopht.1997.01100150754011. [DOI] [PubMed] [Google Scholar]
  101. Tezel G., Wax M. B. Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J Neurosci. 2000 Dec 1;20(23):8693–8700. doi: 10.1523/JNEUROSCI.20-23-08693.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol. 1998 Oct;126(4):498–505. doi: 10.1016/s0002-9394(98)00272-4. [DOI] [PubMed] [Google Scholar]
  103. Thoreson W. B., Witkovsky P. Glutamate receptors and circuits in the vertebrate retina. Prog Retin Eye Res. 1999 Nov;18(6):765–810. doi: 10.1016/s1350-9462(98)00031-7. [DOI] [PubMed] [Google Scholar]
  104. Tielsch J. M., Katz J., Singh K., Quigley H. A., Gottsch J. D., Javitt J., Sommer A. A population-based evaluation of glaucoma screening: the Baltimore Eye Survey. Am J Epidemiol. 1991 Nov 15;134(10):1102–1110. doi: 10.1093/oxfordjournals.aje.a116013. [DOI] [PubMed] [Google Scholar]
  105. Toriu N., Akaike A., Yasuyoshi H., Zhang S., Kashii S., Honda Y., Shimazawa M., Hara H. Lomerizine, a Ca2+ channel blocker, reduces glutamate-induced neurotoxicity and ischemia/reperfusion damage in rat retina. Exp Eye Res. 2000 Apr;70(4):475–484. doi: 10.1006/exer.1999.0809. [DOI] [PubMed] [Google Scholar]
  106. Van Harreveld A. Two mechanisms for spreading depression in the chicken retina. J Neurobiol. 1978 Nov;9(6):419–431. doi: 10.1002/neu.480090602. [DOI] [PubMed] [Google Scholar]
  107. Velte T. J., Yu W., Miller R. F. Estimating the contributions of NMDA and non-NMDA currents to EPSPs in retinal ganglion cells. Vis Neurosci. 1997 Nov-Dec;14(6):999–1014. doi: 10.1017/s0952523800011731. [DOI] [PubMed] [Google Scholar]
  108. Velten I. M., Horn F. K., Korth M., Velten K. The b-wave of the dark adapted flash electroretinogram in patients with advanced asymmetrical glaucoma and normal subjects. Br J Ophthalmol. 2001 Apr;85(4):403–409. doi: 10.1136/bjo.85.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Velten I. M., Korth M., Horn F. K. The a-wave of the dark adapted electroretinogram in glaucomas: are photoreceptors affected? Br J Ophthalmol. 2001 Apr;85(4):397–402. doi: 10.1136/bjo.85.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Wang X., Tay S. S., Ng Y. K. An immunohistochemical study of neuronal and glial cell reactions in retinae of rats with experimental glaucoma. Exp Brain Res. 2000 Jun;132(4):476–484. doi: 10.1007/s002210000360. [DOI] [PubMed] [Google Scholar]
  111. Waxman S. G., Black J. A., Ransom B. R., Stys P. K. Anoxic injury of rat optic nerve: ultrastructural evidence for coupling between Na+ influx and Ca(2+)-mediated injury in myelinated CNS axons. Brain Res. 1994 May 2;644(2):197–204. doi: 10.1016/0006-8993(94)91680-2. [DOI] [PubMed] [Google Scholar]
  112. Weleber R. G. The effect of age on human cone and rod ganzfeld electroretinograms. Invest Ophthalmol Vis Sci. 1981 Mar;20(3):392–399. [PubMed] [Google Scholar]
  113. Wood J. P., DeSantis L., Chao H. M., Osborne N. N. Topically applied betaxolol attenuates ischaemia-induced effects to the rat retina and stimulates BDNF mRNA. Exp Eye Res. 2001 Jan;72(1):79–86. doi: 10.1006/exer.2000.0929. [DOI] [PubMed] [Google Scholar]
  114. Yamamoto T., Kitazawa Y. Vascular pathogenesis of normal-tension glaucoma: a possible pathogenetic factor, other than intraocular pressure, of glaucomatous optic neuropathy. Prog Retin Eye Res. 1998 Jan;17(1):127–143. doi: 10.1016/s1350-9462(97)00009-8. [DOI] [PubMed] [Google Scholar]
  115. Yamazaki S., Inoue Y., Yoshikawa K. Peripapillary fluorescein angiographic findings in primary open angle glaucoma. Br J Ophthalmol. 1996 Sep;80(9):812–817. doi: 10.1136/bjo.80.9.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Yan X., Tezel G., Wax M. B., Edward D. P. Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head. Arch Ophthalmol. 2000 May;118(5):666–673. doi: 10.1001/archopht.118.5.666. [DOI] [PubMed] [Google Scholar]
  117. Yoles E., Wheeler L. A., Schwartz M. Alpha2-adrenoreceptor agonists are neuroprotective in a rat model of optic nerve degeneration. Invest Ophthalmol Vis Sci. 1999 Jan;40(1):65–73. [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES