Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 2001 Nov;85(11):1294–1297. doi: 10.1136/bjo.85.11.1294

Anterior capsule contraction and intraocular lens decentration and tilt after hydrogel lens implantation

K Hayashi 1, H Hayashi 1, F Nakao 1, F Hayashi 1
PMCID: PMC1723752  PMID: 11673291

Abstract

AIM—To prospectively investigate changes in the area of the anterior capsule opening, and intraocular lens (IOL) decentration and tilt after implantation of a hydrogel IOL.
METHODS—100 patients underwent implantation of a hydrogel IOL in one eye and an acrylic IOL implantation in the opposite eye. The area of the anterior capsule opening, and the degree of IOL decentration and tilt were measured using the Scheimpflug videophotography system at 3 days, and at 1, 3, and 6 months postoperatively.
RESULTS—The mean anterior capsule opening area decreased significantly in both groups. At 6 months postoperatively, the area in the hydrogel group was significantly smaller than that in the acrylic group. The mean percentage of the area reduction in the hydrogel group was also significantly greater than that in the acrylic group, being 16.9% in the hydrogel group and 8.8% in the acrylic group. In contrast, IOL decentration and tilt did not progress in either group. No significant differences were found in the degree of IOL decentration and tilt throughout the follow up period.
CONCLUSIONS—Contraction of the anterior capsule opening was more extensive with the hydrogel IOL than with the acrylic IOL, but the degree of IOL decentration and tilt were similar for the two types of lenses studied.



Full Text

The Full Text of this article is available as a PDF (139.0 KB).

Figure 1  .

Figure 1  

Comparison of the mean percentage of the area reduction between the hydrogel and acrylic IOL groups. The mean percentage of the area reduction in the hydrogel group was significantly greater than that in the acrylic group at 3 and 6 months after surgery. *Not statistically significant, † statistically significant.

Figure 2  .

Figure 2  

Comparison of the mean length of decentration (mm) between the hydrogel and acrylic groups. Mean decentration length did not progress either in the hydrogel group (p = 0.8076, repeated measures ANOVA) or in the acrylic group (p = 0.9475). No statistically significant difference was observed in decentration between the two groups. *Not statistically significant.

Figure 3  .

Figure 3  

Comparison of the mean angle of tilt (°) between the hydrogel and acrylic IOL groups. Mean angle of tilt did not change in either group. No significant difference was observed between the hydrogel and acrylic groups. *Not statistically significant.

Figure 4  .

Figure 4  

Retroillumination photographs showing bilateral eyes of a typical patient at 6 months after surgery. (A) In an eye with a hydrogel IOL, fibrosis of the anterior capsule, particularly along the capsulorhexis margin, is extensive. (B) In an opposite eye with an acrylic IOL, the anterior capsule fibrosis is less than that with the hydrogel IOL.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amon M., Menapace R. Cellular invasion on hydrogel and poly(methyl methacrylate) implants. An in vivo study. J Cataract Refract Surg. 1991 Nov;17(6):774–779. doi: 10.1016/s0886-3350(13)80410-5. [DOI] [PubMed] [Google Scholar]
  2. Barrett G. D., Constable I. J., Stewart A. D. Clinical results of hydrogel lens implantation. J Cataract Refract Surg. 1986 Nov;12(6):623–631. doi: 10.1016/s0886-3350(86)80076-1. [DOI] [PubMed] [Google Scholar]
  3. Goarnisson S., Hennekes R. Medium term results of HEMA intraocular lenses (Hydroview). Bull Soc Belge Ophtalmol. 1999;272:63–68. [PubMed] [Google Scholar]
  4. Hayashi H., Hayashi K., Nakao F., Hayashi F. Quantitative comparison of posterior capsule opacification after polymethylmethacrylate, silicone, and soft acrylic intraocular lens implantation. Arch Ophthalmol. 1998 Dec;116(12):1579–1582. doi: 10.1001/archopht.116.12.1579. [DOI] [PubMed] [Google Scholar]
  5. Hayashi K., Harada M., Hayashi H., Nakao F., Hayashi F. Decentration and tilt of polymethyl methacrylate, silicone, and acrylic soft intraocular lenses. Ophthalmology. 1997 May;104(5):793–798. doi: 10.1016/s0161-6420(97)30231-0. [DOI] [PubMed] [Google Scholar]
  6. Hayashi K., Hayashi H., Nakao F., Hayashi F. Reduction in the area of the anterior capsule opening after polymethylmethacrylate, silicone, and soft acrylic intraocular lens implantation. Am J Ophthalmol. 1997 Apr;123(4):441–447. doi: 10.1016/s0002-9394(14)70169-2. [DOI] [PubMed] [Google Scholar]
  7. Hollick E. J., Spalton D. J., Ursell P. G., Meacock W. R., Barman S. A., Boyce J. F. Posterior capsular opacification with hydrogel, polymethylmethacrylate, and silicone intraocular lenses: two-year results of a randomized prospective trial. Am J Ophthalmol. 2000 May;129(5):577–584. doi: 10.1016/s0002-9394(99)00447-x. [DOI] [PubMed] [Google Scholar]
  8. Hollick E. J., Spalton D. J., Ursell P. G., Pande M. V., Barman S. A., Boyce J. F., Tilling K. The effect of polymethylmethacrylate, silicone, and polyacrylic intraocular lenses on posterior capsular opacification 3 years after cataract surgery. Ophthalmology. 1999 Jan;106(1):49–55. doi: 10.1016/S0161-6420(99)90047-7. [DOI] [PubMed] [Google Scholar]
  9. Hollick E. J., Spalton D. J., Ursell P. G. Surface cytologic features on intraocular lenses: can increased biocompatibility have disadvantages? Arch Ophthalmol. 1999 Jul;117(7):872–878. doi: 10.1001/archopht.117.7.872. [DOI] [PubMed] [Google Scholar]
  10. Ishibashi T., Araki H., Sugai S., Tawara A., Ohnishi Y., Inomata H. Anterior capsule opacification in monkey eyes with posterior chamber intraocular lenses. Arch Ophthalmol. 1993 Dec;111(12):1685–1690. doi: 10.1001/archopht.1993.01090120109030. [DOI] [PubMed] [Google Scholar]
  11. Koch M. U., Kalicharan D., van der Want J. J. Lens epithelial cell layer formation related to hydrogel foldable intraocular lenses. J Cataract Refract Surg. 1999 Dec;25(12):1637–1640. doi: 10.1016/s0886-3350(99)00267-9. [DOI] [PubMed] [Google Scholar]
  12. Lenis K., Philipson B. Lens epithelial growth on the anterior surface of hydrogel IOLs. An in vivo study. Acta Ophthalmol Scand. 1998 Apr;76(2):184–187. doi: 10.1034/j.1600-0420.1998.760212.x. [DOI] [PubMed] [Google Scholar]
  13. Levy J. H., Pisacano A. M., Anello R. D. Displacement of bag-placed hydrogel lenses into the vitreous following neodymium: YAG laser capsulotomy. J Cataract Refract Surg. 1990 Sep;16(5):563–566. doi: 10.1016/s0886-3350(13)80770-5. [DOI] [PubMed] [Google Scholar]
  14. Lowe K. J., Easty D. L. A comparison of 141 polymacon (Iogel) and 140 poly(methyl methacrylate) intraocular lens implants. Br J Ophthalmol. 1992 Feb;76(2):88–90. doi: 10.1136/bjo.76.2.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marcantonio J. M., Rakic J. M., Vrensen G. F., Duncan G. Lens cell populations studied in human donor capsular bags with implanted intraocular lenses. Invest Ophthalmol Vis Sci. 2000 Apr;41(5):1130–1141. [PubMed] [Google Scholar]
  16. Menapace R., Amon M., Radax U. Evaluation of 200 consecutive IOGEL 1103 capsular-bag lenses implanted through a small incision. J Cataract Refract Surg. 1992 May;18(3):252–264. doi: 10.1016/s0886-3350(13)80902-9. [DOI] [PubMed] [Google Scholar]
  17. Menapace R., Papapanos P., Radax U., Amon M. Evaluation of 100 consecutive IOGEL 1003 foldable bag-style lenses implanted through a self-sealing tunnel incision. J Cataract Refract Surg. 1994 Jul;20(4):432–439. doi: 10.1016/s0886-3350(13)80180-0. [DOI] [PubMed] [Google Scholar]
  18. Menapace R. Posterior capsule opacification and capsulotomy rates with taco-style hydrogel intraocular lenses. J Cataract Refract Surg. 1996;22 (Suppl 2):1318–1330. doi: 10.1016/s0886-3350(96)80092-7. [DOI] [PubMed] [Google Scholar]
  19. Menapace R., Skorpik C., Juchem M., Scheidel W., Schranz R. Evaluation of the first 60 cases of poly HEMA posterior chamber lenses implanted in the sulcus. J Cataract Refract Surg. 1989 May;15(3):264–271. doi: 10.1016/s0886-3350(89)80083-5. [DOI] [PubMed] [Google Scholar]
  20. Menapace R., Skorpik C., Wedrich A. Evaluation of 150 consecutive cases of poly HEMA posterior chamber lenses implanted in the bag using a small-incision technique. J Cataract Refract Surg. 1990 Sep;16(5):567–577. doi: 10.1016/s0886-3350(13)80771-7. [DOI] [PubMed] [Google Scholar]
  21. Menapace R., Yalon M. Exchange of IOGEL hydrogel one-piece foldable intraocular lens for bag-fixated J-loop poly(methyl methacrylate) intraocular lens. J Cataract Refract Surg. 1993 May;19(3):425–430. doi: 10.1016/s0886-3350(13)80320-3. [DOI] [PubMed] [Google Scholar]
  22. Milauskas A. T. Posterior capsule opacification after silicone lens implantation and its management. J Cataract Refract Surg. 1987 Nov;13(6):644–648. doi: 10.1016/s0886-3350(87)80155-4. [DOI] [PubMed] [Google Scholar]
  23. Noble B. A., Hayward J. M., Huber C. Secondary evaluation of hydrogel lens implants. Eye (Lond) 1990;4(Pt 3):450–455. doi: 10.1038/eye.1990.57. [DOI] [PubMed] [Google Scholar]
  24. Packard R. B., Garner A., Arnott E. J. Poly-HEMA as a material for intraocular lens implantation: a preliminary report. Br J Ophthalmol. 1981 Aug;65(8):585–587. doi: 10.1136/bjo.65.8.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ursell P. G., Spalton D. J., Pande M. V. Anterior capsule stability in eyes with intraocular lenses made of poly(methyl methacrylate), silicone, and AcrySof. J Cataract Refract Surg. 1997 Dec;23(10):1532–1538. doi: 10.1016/s0886-3350(97)80025-9. [DOI] [PubMed] [Google Scholar]
  26. Ursell P. G., Spalton D. J., Pande M. V., Hollick E. J., Barman S., Boyce J., Tilling K. Relationship between intraocular lens biomaterials and posterior capsule opacification. J Cataract Refract Surg. 1998 Mar;24(3):352–360. doi: 10.1016/s0886-3350(98)80323-4. [DOI] [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES