Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 2001 Apr;85(4):397–402. doi: 10.1136/bjo.85.4.397

The a-wave of the dark adapted electroretinogram in glaucomas: are photoreceptors affected?

I Velten 1, M Korth 1, F Horn 1
PMCID: PMC1723933  PMID: 11264126

Abstract

AIMS—To evaluate whether the a-wave of the dark adapted flash electroretinogram (ERG) is affected by glaucomatous damage.
METHODS—ERGs were recorded in 20 patients (age 33-65 years) with advanced glaucomas (primary and secondary open angle and low tension glaucomas) and 20 normals using a ganzfeld stimulus. After 30 minutes of dark adaptation and pupil dilatation to at least 7.5 mm in diameter, luminance response functions were obtained presenting white flashes of increasing scotopic luminance (the highest flash intensity being 9.4 cd/s/m2, the lowest being 5.75 log units below it) with an interflash interval of 5 seconds. For each scotopic luminance, the responses of four flashes were averaged. The a-wave's amplitude was measured at 10, 11, and 12 ms. Within the glaucoma group, correlations between the interocular differences of the a-wave's amplitude and the mean deviation of a static perimetry (Octopus 500 perimeter, program G1) were computed for all flash intensities. Between normals and glaucomas, the a-wave's amplitude was compared for all flash intensities (paired t test).
RESULTS—Within the glaucoma group, the interocular differences of the a-wave's amplitudes correlated significantly with the differences of the MD for flash intensities of 9.4, 5.3, 1.7, and 0.5 cd/s/m2. The a-wave's amplitude was significantly lower in the glaucoma compared with the normal group (p <0.005) for flash intensities of 9.4 and 5.3 cd/s/m2.
CONCLUSION—These electrophysiological results imply that also the outer retinal structures, especially the photoreceptors, may be affected by glaucomatous damage.



Full Text

The Full Text of this article is available as a PDF (145.4 KB).

Figure 1  .

Figure 1  

ERG responses of one normal subject for flash intensities of 0.2, 0.5, 1.7, 5.3, and 9.4 cd/s/m2. The broken line marks the time of 11 ms at which the response magnitudes were measured. This time was short enough to avoid interference of the a-wave with the b-wave.

Figure 2  .

Figure 2  

(A-E) Scatter plots for the correlation between the interocular differences of the a-wave's amplitudes measured at a fixed time of 11 ms and the interocular differences of the MD between both fellow eyes of one patient within the glaucoma group for flash intensities of 9.4 cd/s/m2 (A), 5.3 cd/s/m2 (B), 1.7 cd/s/m2 (C, 0.5 cd/s/m2 (D), and 0.2 cd/s/m5 (E). Pearson's correlation was significant for luminance times of 9.4, 1.7, and 0.5 cd/s/m2 with correlation coefficients of 0.743, 0.660, 0.764, and 0.593, respectively (compare Table 2).

Figure 3  .

Figure 3  

The a-wave's amplitudes measured at 11 ms for all subjects in the glaucoma and the normal group for flash intensities of 0.2, 0.5, 1.7, 5.3, and 9.4 cd/s/m2. For flash intensities of 9.4 and 5.3 cd/s/m2, the a-wave's amplitudes differed significantly between the two study groups (p <0.006, compare Table 2)

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach M., Speidel-Fiaux A. Pattern electroretinogram in glaucoma and ocular hypertension. Doc Ophthalmol. 1989 Oct;73(2):173–181. doi: 10.1007/BF00155035. [DOI] [PubMed] [Google Scholar]
  2. Duijm H. F., van den Berg T. J., Greve E. L. A comparison of retinal and choroidal hemodynamics in patients with primary open-angle glaucoma and normal-pressure glaucoma. Am J Ophthalmol. 1997 May;123(5):644–656. doi: 10.1016/s0002-9394(14)71077-3. [DOI] [PubMed] [Google Scholar]
  3. FRANCOIS J. L'electroretinographie dans le glaucome. Acta Ophthalmol (Copenh) 1953;31(3):205–218. doi: 10.1111/j.1755-3768.1953.tb03286.x. [DOI] [PubMed] [Google Scholar]
  4. Fazio D. T., Heckenlively J. R., Martin D. A., Christensen R. E. The electroretinogram in advanced open-angle glaucoma. Doc Ophthalmol. 1986 Jun 16;63(1):45–54. doi: 10.1007/BF00153011. [DOI] [PubMed] [Google Scholar]
  5. Flammer J., Drance S. M., Augustiny L., Funkhouser A. Quantification of glaucomatous visual field defects with automated perimetry. Invest Ophthalmol Vis Sci. 1985 Feb;26(2):176–181. [PubMed] [Google Scholar]
  6. Frishman L. J., Shen F. F., Du L., Robson J. G., Harwerth R. S., Smith E. L., 3rd, Carter-Dawson L., Crawford M. L. The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma. Invest Ophthalmol Vis Sci. 1996 Jan;37(1):125–141. [PubMed] [Google Scholar]
  7. Gur M., Zeevi Y. Y., Bielik M., Neumann E. Changes in the oscillatory potentials of the electroretinogram in glaucoma. Curr Eye Res. 1987 Mar;6(3):457–466. doi: 10.3109/02713688709025202. [DOI] [PubMed] [Google Scholar]
  8. Hood D. C., Birch D. G. A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography. Vis Neurosci. 1990 Oct;5(4):379–387. doi: 10.1017/s0952523800000468. [DOI] [PubMed] [Google Scholar]
  9. Hood D. C., Birch D. G. Human cone receptor activity: the leading edge of the a-wave and models of receptor activity. Vis Neurosci. 1993 Sep-Oct;10(5):857–871. doi: 10.1017/s0952523800006076. [DOI] [PubMed] [Google Scholar]
  10. Hood D. C., Birch D. G. The A-wave of the human electroretinogram and rod receptor function. Invest Ophthalmol Vis Sci. 1990 Oct;31(10):2070–2081. [PubMed] [Google Scholar]
  11. Janssen P., Naskar R., Moore S., Thanos S., Thiel H. J. Evidence for glaucoma-induced horizontal cell alterations in the human retina. Ger J Ophthalmol. 1996 Nov;5(6):378–385. [PubMed] [Google Scholar]
  12. Kendell K. R., Quigley H. A., Kerrigan L. A., Pease M. E., Quigley E. N. Primary open-angle glaucoma is not associated with photoreceptor loss. Invest Ophthalmol Vis Sci. 1995 Jan;36(1):200–205. [PubMed] [Google Scholar]
  13. Korth M., Horn F., Storck B., Jonas J. The pattern-evoked electroretinogram (PERG): age-related alterations and changes in glaucoma. Graefes Arch Clin Exp Ophthalmol. 1989;227(2):123–130. doi: 10.1007/BF02169783. [DOI] [PubMed] [Google Scholar]
  14. Korth M., Nguyen N. X., Horn F., Martus P. Scotopic threshold response and scotopic PII in glaucoma. Invest Ophthalmol Vis Sci. 1994 Feb;35(2):619–625. [PubMed] [Google Scholar]
  15. Kubota T., Jonas J. B., Naumann G. O. Decreased choroidal thickness in eyes with secondary angle closure glaucoma. An aetiological factor for deep retinal changes in glaucoma? Br J Ophthalmol. 1993 Jul;77(7):430–432. doi: 10.1136/bjo.77.7.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LEYDHECKER G. The electroretinogram in glaucomatous eyes. Br J Ophthalmol. 1950 Sep;34(9):550–554. doi: 10.1136/bjo.34.9.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mehaffey L., Holopigian K., Seiple W. Electro-oculogram changes in patients with ocular hypertension and primary open-angle glaucoma. Doc Ophthalmol. 1993;83(2):103–110. doi: 10.1007/BF01206208. [DOI] [PubMed] [Google Scholar]
  18. O'Donaghue E., Arden G. B., O'Sullivan F., Falcão-Reis F., Moriarty B., Hitchings R. A., Spilleers W., Hogg C., Weinstein G. The pattern electroretinogram in glaucoma and ocular hypertension. Br J Ophthalmol. 1992 Jul;76(7):387–394. doi: 10.1136/bjo.76.7.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Panda S., Jonas J. B. Decreased photoreceptor count in human eyes with secondary angle-closure glaucoma. Invest Ophthalmol Vis Sci. 1992 Jul;33(8):2532–2536. [PubMed] [Google Scholar]
  20. Vaegan, Graham S. L., Goldberg I., Buckland L., Hollows F. C. Flash and pattern electroretinogram changes with optic atrophy and glaucoma. Exp Eye Res. 1995 Jun;60(6):697–706. doi: 10.1016/s0014-4835(05)80011-9. [DOI] [PubMed] [Google Scholar]
  21. Vaegan, Graham S. L., Goldberg I., Millar T. J. Selective reduction of oscillatory potentials and pattern electroretinograms after retinal ganglion cell damage by disease in humans or by kainic acid toxicity in cats. Doc Ophthalmol. 1991;77(3):237–253. doi: 10.1007/BF00161371. [DOI] [PubMed] [Google Scholar]
  22. Viswanathan S., Frishman L. J., Robson J. G., Harwerth R. S., Smith E. L., 3rd The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci. 1999 May;40(6):1124–1136. [PubMed] [Google Scholar]
  23. Weleber R. G. The effect of age on human cone and rod ganzfeld electroretinograms. Invest Ophthalmol Vis Sci. 1981 Mar;20(3):392–399. [PubMed] [Google Scholar]
  24. Yin Z. Q., Vaegan, Millar T. J., Beaumont P., Sarks S. Widespread choroidal insufficiency in primary open-angle glaucoma. J Glaucoma. 1997 Feb;6(1):23–32. [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES