Skip to main content
The British Journal of Ophthalmology logoLink to The British Journal of Ophthalmology
. 2001 May;85(5):529–530. doi: 10.1136/bjo.85.5.529

Factors affecting pulsatile ocular blood flow in normal subjects

F Mori 1, S Konno 1, T Hikichi 1, Y Yamaguchi 1, S Ishiko 1, A Yoshida 1
PMCID: PMC1723979  PMID: 11316707

Abstract

BACKGROUND—The factors that influence pulsatile ocular blood flow (POBF) were evaluated in normal subjects.
METHODS—POBF was measured in 80 normal subjects using Langham OBF computerised tonometry. The effect of age, systolic and diastolic blood pressure, refractive error, intraocular pressure, and axial length on POBF was evaluated using multiple regression analysis.
RESULTS—The mean (SD) POBF value was 593.3 (203.6) µl/min (range 290.7-1201.6). Of all the independent variables in the model, only the axial length was statistically significant (p=0.008). The regression coefficient was negative, indicating that the axial length decreased with increasing POBF.
CONCLUSIONS—These data suggest that, in normal subjects, the POBF decreases as axial length increases. Choroidal blood flow may decrease as the axial length increases. The axial length may therefore be a major factor affecting POBF.



Full Text

The Full Text of this article is available as a PDF (108.3 KB).

Figure 1  .

Figure 1  

Distribution of pulsatile ocular blood flow in the study population (n=80).

Figure 2  .

Figure 2  

Relation between pulsatile ocular blood flow and axial length.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akyol N., Kükner A. S., Ozdemir T., Esmerligil S. Choroidal and retinal blood flow changes in degenerative myopia. Can J Ophthalmol. 1996 Apr;31(3):113–119. [PubMed] [Google Scholar]
  2. Galassi F., Sodi A., Ucci F., Harris A., Chung H. S. Ocular haemodynamics in glaucoma associated with high myopia. Int Ophthalmol. 1998;22(5):299–305. doi: 10.1023/a:1006347509491. [DOI] [PubMed] [Google Scholar]
  3. James C. B., Trew D. R., Clark K., Smith S. E. Factors influencing the ocular pulse--axial length. Graefes Arch Clin Exp Ophthalmol. 1991;229(4):341–344. doi: 10.1007/BF00170692. [DOI] [PubMed] [Google Scholar]
  4. Langham M. E., Grebe R., Hopkins S., Marcus S., Sebag M. Choroidal blood flow in diabetic retinopathy. Exp Eye Res. 1991 Feb;52(2):167–173. doi: 10.1016/0014-4835(91)90256-e. [DOI] [PubMed] [Google Scholar]
  5. Langham M. E., Kramer T. Decreased choroidal blood flow associated with retinitis pigmentosa. Eye (Lond) 1990;4(Pt 2):374–381. doi: 10.1038/eye.1990.50. [DOI] [PubMed] [Google Scholar]
  6. Ravalico G., Pastori G., Crocè M., Toffoli G. Pulsatile ocular blood flow variations with axial length and refractive error. Ophthalmologica. 1997;211(5):271–273. doi: 10.1159/000310807. [DOI] [PubMed] [Google Scholar]
  7. Ravalico G., Toffoli G., Pastori G., Crocè M., Calderini S. Age-related ocular blood flow changes. Invest Ophthalmol Vis Sci. 1996 Dec;37(13):2645–2650. [PubMed] [Google Scholar]
  8. Reiner A., Shih Y. F., Fitzgerald M. E. The relationship of choroidal blood flow and accommodation to the control of ocular growth. Vision Res. 1995 May;35(9):1227–1245. doi: 10.1016/0042-6989(94)00242-e. [DOI] [PubMed] [Google Scholar]
  9. Shih Y. F., Fitzgerald M. E., Cuthbertson S. L., Reiner A. Influence of ophthalmic nerve fibers on choroidal blood flow and myopic eye growth in chicks. Exp Eye Res. 1999 Jul;69(1):9–20. doi: 10.1006/exer.1999.0692. [DOI] [PubMed] [Google Scholar]
  10. Shih Y. F., Fitzgerald M. E., Norton T. T., Gamlin P. D., Hodos W., Reiner A. Reduction in choroidal blood flow occurs in chicks wearing goggles that induce eye growth toward myopia. Curr Eye Res. 1993 Mar;12(3):219–227. doi: 10.3109/02713689308999467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Shih Y. F., Fitzgerald M. E., Reiner A. Choroidal blood flow is reduced in chicks with ocular enlargement induced by corneal incisions. Curr Eye Res. 1993 Mar;12(3):229–237. doi: 10.3109/02713689308999468. [DOI] [PubMed] [Google Scholar]
  12. Shih Y. F., Horng I. H., Yang C. H., Lin L. L., Peng Y., Hung P. T. Ocular pulse amplitude in myopia. J Ocul Pharmacol. 1991 Spring;7(1):83–87. doi: 10.1089/jop.1991.7.83. [DOI] [PubMed] [Google Scholar]
  13. Spraul C. W., Lang G. E., Ronzani M., Högel J., Lang G. K. Reproducibility of measurements with a new slit lamp-mounted ocular blood flow tonograph. Graefes Arch Clin Exp Ophthalmol. 1998 Apr;236(4):274–279. doi: 10.1007/s004170050077. [DOI] [PubMed] [Google Scholar]
  14. St Louis P. J., Sulakhe P. V. Phosphorylation of cardiac sarcolemma by endogenous and exogenous protein kinases. Arch Biochem Biophys. 1979 Nov;198(1):227–240. doi: 10.1016/0003-9861(79)90414-4. [DOI] [PubMed] [Google Scholar]
  15. To'mey K. F., Faris B. M., Jalkh A. E., Nasr A. M. Ocular pulse in high myopia: a study of 40 eyes. Ann Ophthalmol. 1981 May;13(5):569–571. [PubMed] [Google Scholar]
  16. Trew D. R., James C. B., Thomas S. H., Sutton R., Smith S. E. Factors influencing the ocular pulse--the heart rate. Graefes Arch Clin Exp Ophthalmol. 1991;229(6):553–556. doi: 10.1007/BF00203321. [DOI] [PubMed] [Google Scholar]

Articles from The British Journal of Ophthalmology are provided here courtesy of BMJ Publishing Group

RESOURCES