Abstract
AIMS—To test the feasibility of gene transfer into hyaloid blood vessels and into preretinal neovascularisation in a rat model of retinopathy of prematurity (ROP), using different viral vectors. METHODS—Newborn rats were exposed to alternating hypoxic and hyperoxic conditions in order to induce ocular neovascularisation (ROP rats). Adenovirus, herpes simplex, vaccinia, and retroviral (MuLV based) vectors, all carrying the β galactosidase (β-gal) gene, were injected intravitreally on postnatal day 18 (P18). Two sets of controls were also examined: P18 ROP rats injected with saline and P18 rats that were raised in room air before the viral vectors or saline were injected. Two days after injection, the rats were killed, eyes enucleated, and β-gal expression was examined by X-gal staining in whole mounts and in histological sections. RESULTS—Intravitreal injection of the adenovirus and vaccinia vectors yielded marked β-gal expression in hyaloid blood vessels in the rat ROP model. Retinal expression of β-gal with these vectors was limited almost exclusively to the vicinity of the injection site. Injection of herpes simplex yielded a punctuate pattern of β-gal expression in the retina but not in blood vessels. No significant β-gal expression occurred in rat eyes injected with the retroviral vector. CONCLUSIONS—Adenovirus is an efficient vector for gene transfer into blood vessels in an animal model of ROP. This may be a first step towards utilising gene transfer as a tool for modulating ocular neovascularisation for experimental and therapeutic purposes.
Full Text
The Full Text of this article is available as a PDF (206.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ali R. R., Reichel M. B., De Alwis M., Kanuga N., Kinnon C., Levinsky R. J., Hunt D. M., Bhattacharya S. S., Thrasher A. J. Adeno-associated virus gene transfer to mouse retina. Hum Gene Ther. 1998 Jan 1;9(1):81–86. doi: 10.1089/hum.1998.9.1-81. [DOI] [PubMed] [Google Scholar]
- Alon T., Hemo I., Itin A., Pe'er J., Stone J., Keshet E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med. 1995 Oct;1(10):1024–1028. doi: 10.1038/nm1095-1024. [DOI] [PubMed] [Google Scholar]
- Bennett J., Pakola S., Zeng Y., Maguire A. Humoral response after administration of E1-deleted adenoviruses: immune privilege of the subretinal space. Hum Gene Ther. 1996 Sep 10;7(14):1763–1769. doi: 10.1089/hum.1996.7.14-1763. [DOI] [PubMed] [Google Scholar]
- Bennett J., Tanabe T., Sun D., Zeng Y., Kjeldbye H., Gouras P., Maguire A. M. Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy. Nat Med. 1996 Jun;2(6):649–654. doi: 10.1038/nm0696-649. [DOI] [PubMed] [Google Scholar]
- Chakrabarti S., Brechling K., Moss B. Vaccinia virus expression vector: coexpression of beta-galactosidase provides visual screening of recombinant virus plaques. Mol Cell Biol. 1985 Dec;5(12):3403–3409. doi: 10.1128/mcb.5.12.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cocchi F., Menotti L., Dubreuil P., Lopez M., Campadelli-Fiume G. Cell-to-cell spread of wild-type herpes simplex virus type 1, but not of syncytial strains, is mediated by the immunoglobulin-like receptors that mediate virion entry, nectin1 (PRR1/HveC/HIgR) and nectin2 (PRR2/HveB). J Virol. 2000 Apr;74(8):3909–3917. doi: 10.1128/jvi.74.8.3909-3917.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davar G., Kramer M. F., Garber D., Roca A. L., Andersen J. K., Bebrin W., Coen D. M., Kosz-Vnenchak M., Knipe D. M., Breakefield X. O. Comparative efficacy of expression of genes delivered to mouse sensory neurons with herpes virus vectors. J Comp Neurol. 1994 Jan 1;339(1):3–11. doi: 10.1002/cne.903390103. [DOI] [PubMed] [Google Scholar]
- Hoffman L. M., Maguire A. M., Bennett J. Cell-mediated immune response and stability of intraocular transgene expression after adenovirus-mediated delivery. Invest Ophthalmol Vis Sci. 1997 Oct;38(11):2224–2233. [PubMed] [Google Scholar]
- Jaggar R. T., Chan H. Y., Harris A. L., Bicknell R. Endothelial cell-specific expression of tumor necrosis factor-alpha from the KDR or E-selectin promoters following retroviral delivery. Hum Gene Ther. 1997 Dec 10;8(18):2239–2247. doi: 10.1089/hum.1997.8.18-2239. [DOI] [PubMed] [Google Scholar]
- Kakehashi A., Schepens C. L., de Sousa-Neto A., Jalkh A. E., Trempe C. L. Biomicroscopic findings of posterior vitreoschisis. Ophthalmic Surg. 1993 Dec;24(12):846–850. [PubMed] [Google Scholar]
- Kimura H., Sakamoto T., Cardillo J. A., Spee C., Hinton D. R., Gordon E. M., Anderson W. F., Ryan S. J. Retrovirus-mediated suicide gene transduction in the vitreous cavity of the eye: feasibility in prevention of proliferative vitreoretinopathy. Hum Gene Ther. 1996 May 1;7(7):799–808. doi: 10.1089/hum.1996.7.7-799. [DOI] [PubMed] [Google Scholar]
- Larkin D. F., Oral H. B., Ring C. J., Lemoine N. R., George A. J. Adenovirus-mediated gene delivery to the corneal endothelium. Transplantation. 1996 Feb 15;61(3):363–370. doi: 10.1097/00007890-199602150-00005. [DOI] [PubMed] [Google Scholar]
- Latker C. H., Kuwabara T. Regression of the tunica vasculosa lentis in the postnatal rat. Invest Ophthalmol Vis Sci. 1981 Nov;21(5):689–699. [PubMed] [Google Scholar]
- Mashhour B., Couton D., Perricaudet M., Briand P. In vivo adenovirus-mediated gene transfer into ocular tissues. Gene Ther. 1994 Mar;1(2):122–126. [PubMed] [Google Scholar]
- Mitchell C. A., Risau W., Drexler H. C. Regression of vessels in the tunica vasculosa lentis is initiated by coordinated endothelial apoptosis: a role for vascular endothelial growth factor as a survival factor for endothelium. Dev Dyn. 1998 Nov;213(3):322–333. doi: 10.1002/(SICI)1097-0177(199811)213:3<322::AID-AJA8>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
- Murata T., Kimura H., Sakamoto T., Osusky R., Spee C., Stout T. J., Hinton D. R., Ryan S. J. Ocular gene therapy: experimental studies and clinical possibilities. Ophthalmic Res. 1997;29(5):242–251. doi: 10.1159/000268022. [DOI] [PubMed] [Google Scholar]
- Naviaux R. K., Costanzi E., Haas M., Verma I. M. The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J Virol. 1996 Aug;70(8):5701–5705. doi: 10.1128/jvi.70.8.5701-5705.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okamoto N., Tobe T., Hackett S. F., Ozaki H., Vinores M. A., LaRochelle W., Zack D. J., Campochiaro P. A. Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. Am J Pathol. 1997 Jul;151(1):281–291. [PMC free article] [PubMed] [Google Scholar]
- Ozaki H., Okamoto N., Ortega S., Chang M., Ozaki K., Sadda S., Vinores M. A., Derevjanik N., Zack D. J., Basilico C. Basic fibroblast growth factor is neither necessary nor sufficient for the development of retinal neovascularization. Am J Pathol. 1998 Sep;153(3):757–765. doi: 10.1016/S0002-9440(10)65619-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozaki K., Yoshida T., Ide H., Saito I., Ikeda Y., Sugimura T., Terada M. Use of von Willebrand factor promoter to transduce suicidal gene to human endothelial cells, HUVEC. Hum Gene Ther. 1996 Aug 20;7(13):1483–1490. doi: 10.1089/hum.1996.7.13-1483. [DOI] [PubMed] [Google Scholar]
- Penn J. S., Henry M. M., Tolman B. L. Exposure to alternating hypoxia and hyperoxia causes severe proliferative retinopathy in the newborn rat. Pediatr Res. 1994 Dec;36(6):724–731. doi: 10.1203/00006450-199412000-00007. [DOI] [PubMed] [Google Scholar]
- Robinson G. S., Pierce E. A., Rook S. L., Foley E., Webb R., Smith L. E. Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4851–4856. doi: 10.1073/pnas.93.10.4851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakamoto T., Kimura H., Scuric Z., Spee C., Gordon E. M., Hinton D. R., Anderson W. F., Ryan S. J. Inhibition of experimental proliferative vitreoretinopathy by retroviral vector-mediated transfer of suicide gene. Can proliferative vitreoretinopathy be a target of gene therapy? Ophthalmology. 1995 Oct;102(10):1417–1424. doi: 10.1016/s0161-6420(95)30850-0. [DOI] [PubMed] [Google Scholar]
- Schubert C. A., Kimura H., Spee C., Hinton D. R., Gordon E. M., Anderson W. F., Ryan S. J. Retrovirus-mediated transfer of the suicide gene into retinal pigment epithelial cells in vitro. Curr Eye Res. 1997 Jul;16(7):656–662. doi: 10.1076/ceyr.16.7.656.5066. [DOI] [PubMed] [Google Scholar]
- Schwatz S. D., Alexander R., Hiscott P., Gregor Z. J. Recognition of vitreoschisis in proliferative diabetic retinopathy. A useful landmark in vitrectomy for diabetic traction retinal detachment. Ophthalmology. 1996 Feb;103(2):323–328. doi: 10.1016/s0161-6420(96)30697-0. [DOI] [PubMed] [Google Scholar]
- Seo M. S., Kwak N., Ozaki H., Yamada H., Okamoto N., Yamada E., Fabbro D., Hofmann F., Wood J. M., Campochiaro P. A. Dramatic inhibition of retinal and choroidal neovascularization by oral administration of a kinase inhibitor. Am J Pathol. 1999 Jun;154(6):1743–1753. doi: 10.1016/S0002-9440(10)65430-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shalaby F., Rossant J., Yamaguchi T. P., Gertsenstein M., Wu X. F., Breitman M. L., Schuh A. C. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995 Jul 6;376(6535):62–66. doi: 10.1038/376062a0. [DOI] [PubMed] [Google Scholar]
- Shukla D., Liu J., Blaiklock P., Shworak N. W., Bai X., Esko J. D., Cohen G. H., Eisenberg R. J., Rosenberg R. D., Spear P. G. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell. 1999 Oct 1;99(1):13–22. doi: 10.1016/s0092-8674(00)80058-6. [DOI] [PubMed] [Google Scholar]
- Smith L. E., Kopchick J. J., Chen W., Knapp J., Kinose F., Daley D., Foley E., Smith R. G., Schaeffer J. M. Essential role of growth hormone in ischemia-induced retinal neovascularization. Science. 1997 Jun 13;276(5319):1706–1709. doi: 10.1126/science.276.5319.1706. [DOI] [PubMed] [Google Scholar]
- Stitt A. W., McKenna D., Simpson D. A., Gardiner T. A., Harriott P., Archer D. B., Nelson J. The 67-kd laminin receptor is preferentially expressed by proliferating retinal vessels in a murine model of ischemic retinopathy. Am J Pathol. 1998 May;152(5):1359–1365. [PMC free article] [PubMed] [Google Scholar]
- Walton T., Wang J. L., Ribas A., Barsky S. H., Economou J., Nguyen M. Endothelium-specific expression of an E-selectin promoter recombinant adenoviral vector. Anticancer Res. 1998 May-Jun;18(3A):1357–1360. [PubMed] [Google Scholar]
- Wang J. L., Toida K., Uehara Y. The tunica vasculosa lentis; an expedient system for studying vascular formation and regression. J Electron Microsc (Tokyo) 1990;39(1):46–49. [PubMed] [Google Scholar]
- Wickham T. J., Haskard D., Segal D., Kovesdi I. Targeting endothelium for gene therapy via receptors up-regulated during angiogenesis and inflammation. Cancer Immunol Immunother. 1997 Nov-Dec;45(3-4):149–151. doi: 10.1007/s002620050419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida A., Yoshida S., Khalil A. K., Ishibashi T., Inomata H. Role of NF-kappaB-mediated interleukin-8 expression in intraocular neovascularization. Invest Ophthalmol Vis Sci. 1998 Jun;39(7):1097–1106. [PubMed] [Google Scholar]
- Zhu M., Provis J. M., Penfold P. L. The human hyaloid system: cellular phenotypes and inter-relationships. Exp Eye Res. 1999 May;68(5):553–563. doi: 10.1006/exer.1998.0632. [DOI] [PubMed] [Google Scholar]