Abstract
Objective—To examine the validity of using blood taken from the toe for the assessment of plasma lactate concentration in rowers. To achieve this, values were compared with those taken from the fingertip and earlobe.
Methods—Nine subjects exercised at two separate submaximum workloads on the Concept II rowing ergometer. The loads, each lasting four minutes, elicited mean (SD) heart rate responses of 160.1 (8.5) and 180.1 (5.7) beats/min, which corresponded to 76.4 (6.1)% and 91.9 (4.7)% of the estimated heart rate maximum of the subjects. Blood was simultaneously removed after the cessation of exercise by three experimenters and was analysed for plasma lactate concentration.
Results—At 76.4% of estimated heart rate maximum, the mean (SD) plasma lactate concentrations sampled from the fingertip, toe, and earlobe were 6.36 (1.58), 5.81 (1.11), and 5.29 (1.24) mmol/l respectively. At 91.9% of estimated heart rate maximum, respective values were 8.81 (2.30), 8.53 (1.37), and 8.41 (2.35) mmol/l. No significant differences (p>0.05) were found between any of the sites at either work intensity.
Conclusions—The toe may offer a practical alternative for assessing the concentration of lactate during rowing, having the advantage that repeated blood samples can be removed without interruption of the rowing action.
Key Words: blood sampling; lactate; ergometer; rowing
Full Text
The Full Text of this article is available as a PDF (114.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahlborg G., Hagenfeldt L., Wahren J. Substrate utilization by the inactive leg during one-leg or arm exercise. J Appl Physiol. 1975 Nov;39(5):718–723. doi: 10.1152/jappl.1975.39.5.718. [DOI] [PubMed] [Google Scholar]
- Bishop P. A., May M., Smith J. F., Kime J., Mayo J., Murphy M. Influence of blood handling techniques on lactic acid concentrations. Int J Sports Med. 1992 Jan;13(1):56–59. doi: 10.1055/s-2007-1021235. [DOI] [PubMed] [Google Scholar]
- Dassonville J., Beillot J., Lessard Y., Jan J., André A. M., Le Pourcelet C., Rochcongar P., Carré F. Blood lactate concentrations during exercise: effect of sampling site and exercise mode. J Sports Med Phys Fitness. 1998 Mar;38(1):39–46. [PubMed] [Google Scholar]
- Davis J. A. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc. 1985 Feb;17(1):6–21. [PubMed] [Google Scholar]
- Farrell P. A., Wilmore J. H., Coyle E. F., Billing J. E., Costill D. L. Plasma lactate accumulation and distance running performance. Med Sci Sports. 1979 Winter;11(4):338–344. [PubMed] [Google Scholar]
- Foxdal P., Sjödin A., Ostman B., Sjödin B. The effect of different blood sampling sites and analyses on the relationship between exercise intensity and 4.0 mmol.l-1 blood lactate concentration. Eur J Appl Physiol Occup Physiol. 1991;63(1):52–54. doi: 10.1007/BF00760801. [DOI] [PubMed] [Google Scholar]
- Heck H., Mader A., Hess G., Mücke S., Müller R., Hollmann W. Justification of the 4-mmol/l lactate threshold. Int J Sports Med. 1985 Jun;6(3):117–130. doi: 10.1055/s-2008-1025824. [DOI] [PubMed] [Google Scholar]
- Karlsson J., Jacobs I. Onset of blood lactage accumulation during muscular exercise as a threshold concept. I. Theoretical considerations. Int J Sports Med. 1982 Nov;3(4):190–201. doi: 10.1055/s-2008-1026087. [DOI] [PubMed] [Google Scholar]
- Knowlton R. G., Brown D. D., Hetzler R. K., Sikora L. M. Venous and fingertip blood to calculate plasma volume shift following exercise. Med Sci Sports Exerc. 1990 Dec;22(6):854–857. doi: 10.1249/00005768-199012000-00019. [DOI] [PubMed] [Google Scholar]
- Koutedakis Y., Sharp N. C. Lactic acid removal and heart rate frequencies during recovery after strenuous rowing exercise. Br J Sports Med. 1985 Dec;19(4):199–202. doi: 10.1136/bjsm.19.4.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lakomy H. K., Lakomy J. Estimation of maximum oxygen uptake from submaximal exercise on a Concept II rowing ergometer. J Sports Sci. 1993 Jun;11(3):227–232. doi: 10.1080/02640419308729989. [DOI] [PubMed] [Google Scholar]
- Robergs R. A., Chwalbinska-Moneta J., Mitchell J. B., Pascoe D. D., Houmard J., Costill D. L. Blood lactate threshold differences between arterialized and venous blood. Int J Sports Med. 1990 Dec;11(6):446–451. doi: 10.1055/s-2007-1024835. [DOI] [PubMed] [Google Scholar]
- Secher N. H., Clausen J. P., Klausen K., Noer I., Trap-Jensen J. Central and regional circulatory effects of adding arm exercise to leg exercise. Acta Physiol Scand. 1977 Jul;100(3):288–297. doi: 10.1111/j.1748-1716.1977.tb05952.x. [DOI] [PubMed] [Google Scholar]
- Stegmann H., Kindermann W. Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol.l(-1) lactate. Int J Sports Med. 1982 May;3(2):105–110. doi: 10.1055/s-2008-1026072. [DOI] [PubMed] [Google Scholar]
- Urhausen A., Coen B., Weiler B., Kindermann W. Individual anaerobic threshold and maximum lactate steady state. Int J Sports Med. 1993 Apr;14(3):134–139. doi: 10.1055/s-2007-1021157. [DOI] [PubMed] [Google Scholar]
- Williams J. R., Armstrong N., Kirby B. J. The influence of the site of sampling and assay medium upon the measurement and interpretation of blood lactate responses to exercise. J Sports Sci. 1992 Apr;10(2):95–107. doi: 10.1080/02640419208729912. [DOI] [PubMed] [Google Scholar]
- Yoshida T. Effect of exercise duration during incremental exercise on the determination of anaerobic threshold and the onset of blood lactate accumulation. Eur J Appl Physiol Occup Physiol. 1984;53(3):196–199. doi: 10.1007/BF00776589. [DOI] [PubMed] [Google Scholar]
- el-Sayed M. S., George K. P., Wilkinson D., Mullan N., Fenoglio R., Flannigan J. Fingertip and venous blood lactate concentration in response to graded treadmill exercise. J Sports Sci. 1993 Apr;11(2):139–143. doi: 10.1080/02640419308729977. [DOI] [PubMed] [Google Scholar]