Skip to main content
British Journal of Sports Medicine logoLink to British Journal of Sports Medicine
. 2000 Aug;34(4):273–278. doi: 10.1136/bjsm.34.4.273

Bone mineral density and serum testosterone in chronically trained, high mileage 40–55 year old male runners

K MacKelvie 1, J Taunton 1, H McKay 1, K Khan 1
PMCID: PMC1724199  PMID: 10953900

Abstract

Objectives—To identify physical activity that is beneficial for the maintenance of bone strength with increasing age by examining the relation between bone mineral density (BMD) and chronic endurance training in men. BMD at the proximal femur, its subregions, and the lumbar spine, and serum testosterone were compared between two groups of long distance runners with more than 20 years of training experience and non-athletic controls.

Methods—Runners (n = 12) were divided into (a) high volume runners (n = 7), running 64–80 km a week, and (b) very high volume runners (n = 5), running more than 95 km a week, and compared with non-athletic male controls, exercising in non-endurance oriented activities two to four times a week. BMD (g/cm2) at the total proximal femur, femoral neck, trochanteric region, and lumbar spine was measured by dual energy x ray absorptiometry. Total testosterone (nmol/l) and free testosterone (pmol/l) in serum were measured by radioimmunoassay from single fasting blood samples.

Results—Height, weight, and age (range = 40–55 years) were not significantly different between groups. The high volume runners had significantly higher BMD at the total proximal femur (1.09 (0.17) v 0.94 (0.056)), femoral neck (0.91 (0.16) v 0.78 (0.071)), and trochanteric region (0.85 (0.14) v 0.73 (0.053)) than controls (p<0.05). The differences in BMD for the proximal femur between the very high volume runners and the other two groups were not significant. There was no difference in lumbar spine BMD, total testosterone, or free testosterone between groups. However, there was a significant negative correlation between total testosterone (r = -0.73, p<0.01) and free testosterone (r = -0.79, p<0.005) and running volume in the distance runners.

Conclusions—Long term distance running with training volumes less than 80 km a week had a positive effect on BMD of the proximal femur. With running volumes greater than 64 km a week, training was inversely related to testosterone levels, but levels remained within the normal range.

Key Words: exercise; bone mineral density; male athletes; runners; endurance training; testosterone

Full Text

The Full Text of this article is available as a PDF (127.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arce J. C., De Souza M. J. Exercise and male factor infertility. Sports Med. 1993 Mar;15(3):146–169. doi: 10.2165/00007256-199315030-00002. [DOI] [PubMed] [Google Scholar]
  2. Arce J. C., De Souza M. J., Pescatello L. S., Luciano A. A. Subclinical alterations in hormone and semen profile in athletes. Fertil Steril. 1993 Feb;59(2):398–404. [PubMed] [Google Scholar]
  3. Bailey D. A., McKay H. A., Mirwald R. L., Crocker P. R., Faulkner R. A. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999 Oct;14(10):1672–1679. doi: 10.1359/jbmr.1999.14.10.1672. [DOI] [PubMed] [Google Scholar]
  4. Bendavid E. J., Shan J., Barrett-Connor E. Factors associated with bone mineral density in middle-aged men. J Bone Miner Res. 1996 Aug;11(8):1185–1190. doi: 10.1002/jbmr.5650110818. [DOI] [PubMed] [Google Scholar]
  5. Bennell K. L., Malcolm S. A., Khan K. M., Thomas S. A., Reid S. J., Brukner P. D., Ebeling P. R., Wark J. D. Bone mass and bone turnover in power athletes, endurance athletes, and controls: a 12-month longitudinal study. Bone. 1997 May;20(5):477–484. doi: 10.1016/s8756-3282(97)00026-4. [DOI] [PubMed] [Google Scholar]
  6. Bergmann G., Graichen F., Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech. 1993 Aug;26(8):969–990. doi: 10.1016/0021-9290(93)90058-m. [DOI] [PubMed] [Google Scholar]
  7. Bilanin J. E., Blanchard M. S., Russek-Cohen E. Lower vertebral bone density in male long distance runners. Med Sci Sports Exerc. 1989 Feb;21(1):66–70. doi: 10.1249/00005768-198902000-00012. [DOI] [PubMed] [Google Scholar]
  8. Brahm H., Ström H., Piehl-Aulin K., Mallmin H., Ljunghall S. Bone metabolism in endurance trained athletes: a comparison to population-based controls based on DXA, SXA, quantitative ultrasound, and biochemical markers. Calcif Tissue Int. 1997 Dec;61(6):448–454. doi: 10.1007/s002239900366. [DOI] [PubMed] [Google Scholar]
  9. Conroy B. P., Kraemer W. J., Maresh C. M., Fleck S. J., Stone M. H., Fry A. C., Miller P. D., Dalsky G. P. Bone mineral density in elite junior Olympic weightlifters. Med Sci Sports Exerc. 1993 Oct;25(10):1103–1109. [PubMed] [Google Scholar]
  10. De Souza M. J., Miller B. E. The effect of endurance training on reproductive function in male runners. A 'volume threshold' hypothesis. Sports Med. 1997 Jun;23(6):357–374. doi: 10.2165/00007256-199723060-00003. [DOI] [PubMed] [Google Scholar]
  11. Finkelstein J. S., Klibanski A., Neer R. M., Greenspan S. L., Rosenthal D. I., Crowley W. F., Jr Osteoporosis in men with idiopathic hypogonadotropic hypogonadism. Ann Intern Med. 1987 Mar;106(3):354–361. doi: 10.7326/0003-4819-106-3-. [DOI] [PubMed] [Google Scholar]
  12. Frost H. M. Bone "mass" and the "mechanostat": a proposal. Anat Rec. 1987 Sep;219(1):1–9. doi: 10.1002/ar.1092190104. [DOI] [PubMed] [Google Scholar]
  13. Goodpaster B. H., Costill D. L., Trappe S. W., Hughes G. M. The relationship of sustained exercise training and bone mineral density in aging male runners. Scand J Med Sci Sports. 1996 Aug;6(4):216–221. doi: 10.1111/j.1600-0838.1996.tb00094.x. [DOI] [PubMed] [Google Scholar]
  14. Haapasalo H., Sievanen H., Kannus P., Heinonen A., Oja P., Vuori I. Dimensions and estimated mechanical characteristics of the humerus after long-term tennis loading. J Bone Miner Res. 1996 Jun;11(6):864–872. doi: 10.1002/jbmr.5650110619. [DOI] [PubMed] [Google Scholar]
  15. Hackney A. C., Sinning W. E., Bruot B. C. Hypothalamic-pituitary-testicular axis function in endurance-trained males. Int J Sports Med. 1990 Aug;11(4):298–303. doi: 10.1055/s-2007-1024811. [DOI] [PubMed] [Google Scholar]
  16. Hackney A. C., Sinning W. E., Bruot B. C. Reproductive hormonal profiles of endurance-trained and untrained males. Med Sci Sports Exerc. 1988 Feb;20(1):60–65. doi: 10.1249/00005768-198802000-00009. [DOI] [PubMed] [Google Scholar]
  17. Hamdy R. C., Anderson J. S., Whalen K. E., Harvill L. M. Regional differences in bone density of young men involved in different exercises. Med Sci Sports Exerc. 1994 Jul;26(7):884–888. [PubMed] [Google Scholar]
  18. Hetland M. L., Haarbo J., Christiansen C. Low bone mass and high bone turnover in male long distance runners. J Clin Endocrinol Metab. 1993 Sep;77(3):770–775. doi: 10.1210/jcem.77.3.8370698. [DOI] [PubMed] [Google Scholar]
  19. Horowitz M., Wishart J. M., O'Loughlin P. D., Morris H. A., Need A. G., Nordin B. E. Osteoporosis and Klinefelter's syndrome. Clin Endocrinol (Oxf) 1992 Jan;36(1):113–118. doi: 10.1111/j.1365-2265.1992.tb02910.x. [DOI] [PubMed] [Google Scholar]
  20. Kannus P., Haapasalo H., Sankelo M., Sievänen H., Pasanen M., Heinonen A., Oja P., Vuori I. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med. 1995 Jul 1;123(1):27–31. doi: 10.7326/0003-4819-123-1-199507010-00003. [DOI] [PubMed] [Google Scholar]
  21. Karlsson M. K., Hasserius R., Obrant K. J. Bone mineral density in athletes during and after career: a comparison between loaded and unloaded skeletal regions. Calcif Tissue Int. 1996 Oct;59(4):245–248. doi: 10.1007/s002239900117. [DOI] [PubMed] [Google Scholar]
  22. Kohrt W. M., Ehsani A. A., Birge S. J., Jr Effects of exercise involving predominantly either joint-reaction or ground-reaction forces on bone mineral density in older women. J Bone Miner Res. 1997 Aug;12(8):1253–1261. doi: 10.1359/jbmr.1997.12.8.1253. [DOI] [PubMed] [Google Scholar]
  23. Lane N. E., Oehlert J. W., Bloch D. A., Fries J. F. The relationship of running to osteoarthritis of the knee and hip and bone mineral density of the lumbar spine: a 9 year longitudinal study. J Rheumatol. 1998 Feb;25(2):334–341. [PubMed] [Google Scholar]
  24. Lanyon L. E. Functional strain as a determinant for bone remodeling. Calcif Tissue Int. 1984;36 (Suppl 1):S56–S61. doi: 10.1007/BF02406134. [DOI] [PubMed] [Google Scholar]
  25. MacConnie S. E., Barkan A., Lampman R. M., Schork M. A., Beitins I. Z. Decreased hypothalamic gonadotropin-releasing hormone secretion in male marathon runners. N Engl J Med. 1986 Aug 14;315(7):411–417. doi: 10.1056/NEJM198608143150702. [DOI] [PubMed] [Google Scholar]
  26. MacDougall J. D., Webber C. E., Martin J., Ormerod S., Chesley A., Younglai E. V., Gordon C. L., Blimkie C. J. Relationship among running mileage, bone density, and serum testosterone in male runners. J Appl Physiol (1985) 1992 Sep;73(3):1165–1170. doi: 10.1152/jappl.1992.73.3.1165. [DOI] [PubMed] [Google Scholar]
  27. McKay H. A., Petit M. A., Schutz R. W., Prior J. C., Barr S. I., Khan K. M. Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and early pubescent children. J Pediatr. 2000 Feb;136(2):156–162. doi: 10.1016/s0022-3476(00)70095-3. [DOI] [PubMed] [Google Scholar]
  28. Michel B. A., Lane N. E., Björkengren A., Bloch D. A., Fries J. F. Impact of running on lumbar bone density: a 5-year longitudinal study. J Rheumatol. 1992 Nov;19(11):1759–1763. [PubMed] [Google Scholar]
  29. Mosley J. R., March B. M., Lynch J., Lanyon L. E. Strain magnitude related changes in whole bone architecture in growing rats. Bone. 1997 Mar;20(3):191–198. doi: 10.1016/s8756-3282(96)00385-7. [DOI] [PubMed] [Google Scholar]
  30. Smith R., Rutherford O. M. Spine and total body bone mineral density and serum testosterone levels in male athletes. Eur J Appl Physiol Occup Physiol. 1993;67(4):330–334. doi: 10.1007/BF00357631. [DOI] [PubMed] [Google Scholar]
  31. Umemura Y., Ishiko T., Yamauchi T., Kurono M., Mashiko S. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res. 1997 Sep;12(9):1480–1485. doi: 10.1359/jbmr.1997.12.9.1480. [DOI] [PubMed] [Google Scholar]
  32. Vanderschueren D., Bouillon R. Androgens and bone. Calcif Tissue Int. 1995 May;56(5):341–346. doi: 10.1007/BF00301598. [DOI] [PubMed] [Google Scholar]
  33. Wheeler G. D., Wall S. R., Belcastro A. N., Cumming D. C. Reduced serum testosterone and prolactin levels in male distance runners. JAMA. 1984 Jul 27;252(4):514–516. [PubMed] [Google Scholar]
  34. Wosk J., Voloshin A. Wave attenuation in skeletons of young healthy persons. J Biomech. 1981;14(4):261–267. doi: 10.1016/0021-9290(81)90071-3. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Sports Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES