Abstract
Objectives—To evaluate the changes produced in both the isocapnic buffering and hypocapnic hyperventilation (HHV) phases of professional cyclists (n = 11) in response to endurance training, and to compare the results with those of amateur cyclists (n = 11).
Methods—Each professional cyclist performed three laboratory exercise tests to exhaustion during the active rest (autumn: November), precompetition (winter: January), and competition (spring: May) periods of the sports season. Amateur cyclists only performed one exercise test during the competition period. The isocapnic buffering and HHV ranges were calculated during each test and defined as VO2 and power output (W).
Results—No significant differences were found in the isocapnic buffering range in each of the periods of the sports season in professional cyclists. In contrast, there was a significant reduction in the HHV range (expressed in W) during both the competition (p<0.01) and precompetition(p<0.05) periods compared with the rest period. On the other hand, a longer HHV range (p<0.01) was observed in amateur cyclists than in professional cyclists (whether this was expressed in terms of VO2 or W).
Conclusions—No change is observed in the isocapnic buffering range of professional cyclists throughout a sports season despite a considerable increase in training loads and a significant reduction in HHV range expressed in terms of power output.
Key Words: training; cycling; isocapnic buffering; hypocapnic hyperventilation
Full Text
The Full Text of this article is available as a PDF (132.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beaver W. L., Wasserman K., Whipp B. J. Bicarbonate buffering of lactic acid generated during exercise. J Appl Physiol (1985) 1986 Feb;60(2):472–478. doi: 10.1152/jappl.1986.60.2.472. [DOI] [PubMed] [Google Scholar]
- Bell G. J., Wenger H. A. The effect of one-legged sprint training on intramuscular pH and nonbicarbonate buffering capacity. Eur J Appl Physiol Occup Physiol. 1988;58(1-2):158–164. doi: 10.1007/BF00636620. [DOI] [PubMed] [Google Scholar]
- Chicharro J. L., Carvajal A., Pardo J., Pérez M., Lucía A. Physiological parameters determined at OBLA vs. a fixed heart rate of 175 beats x min-1 in an incremental test performed by amateur and professional cyclists. Jpn J Physiol. 1999 Feb;49(1):63–69. doi: 10.2170/jjphysiol.49.63. [DOI] [PubMed] [Google Scholar]
- Costill D. L., Flynn M. G., Kirwan J. P., Houmard J. A., Mitchell J. B., Thomas R., Park S. H. Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med Sci Sports Exerc. 1988 Jun;20(3):249–254. doi: 10.1249/00005768-198806000-00006. [DOI] [PubMed] [Google Scholar]
- Coyle E. F., Coggan A. R., Hopper M. K., Walters T. J. Determinants of endurance in well-trained cyclists. J Appl Physiol (1985) 1988 Jun;64(6):2622–2630. doi: 10.1152/jappl.1988.64.6.2622. [DOI] [PubMed] [Google Scholar]
- Coyle E. F., Feltner M. E., Kautz S. A., Hamilton M. T., Montain S. J., Baylor A. M., Abraham L. D., Petrek G. W. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc. 1991 Jan;23(1):93–107. [PubMed] [Google Scholar]
- Davis J. A. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc. 1985 Feb;17(1):6–21. [PubMed] [Google Scholar]
- Fagard R., Aubert A., Lysens R., Staessen J., Vanhees L., Amery A. Noninvasive assessment of seasonal variations in cardiac structure and function in cyclists. Circulation. 1983 Apr;67(4):896–901. doi: 10.1161/01.cir.67.4.896. [DOI] [PubMed] [Google Scholar]
- Grossie J., Collins C., Julian M. Bicarbonate and fast-twitch muscle: evidence for a major role in pH regulation. J Membr Biol. 1988 Nov;105(3):265–272. doi: 10.1007/BF01871003. [DOI] [PubMed] [Google Scholar]
- Hirakoba K., Maruyama A., Inaki M., Misaka K. Effect of endurance training on excessive CO2 expiration due to lactate production in exercise. Eur J Appl Physiol Occup Physiol. 1992;64(1):73–77. doi: 10.1007/BF00376444. [DOI] [PubMed] [Google Scholar]
- Kadish A. H., Weisman H. F., Veltri E. P., Epstein A. E., Slepian M. J., Levine J. H. Paradoxical effects of exercise on the QT interval in patients with polymorphic ventricular tachycardia receiving type Ia antiarrhythmic agents. Circulation. 1990 Jan;81(1):14–19. doi: 10.1161/01.cir.81.1.14. [DOI] [PubMed] [Google Scholar]
- Lopategui E., Perez H. R., Smith T. K., Otto R. M. The anaerobic threshold of elite and novice cyclists. J Sports Med Phys Fitness. 1986 Jun;26(2):123–127. [PubMed] [Google Scholar]
- Luciá A., Hoyos J., Carvajal A., Chicharro J. L. Heart rate response to professional road cycling: the Tour de France. Int J Sports Med. 1999 Apr;20(3):167–172. doi: 10.1055/s-1999-970284. [DOI] [PubMed] [Google Scholar]
- Lucía A., Carvajal A., Calderón F. J., Alfonso A., Chicharro J. L. Breathing pattern in highly competitive cyclists during incremental exercise. Eur J Appl Physiol Occup Physiol. 1999 May;79(6):512–521. doi: 10.1007/s004210050546. [DOI] [PubMed] [Google Scholar]
- Lucía A., Pardo J., Durántez A., Hoyos J., Chicharro J. L. Physiological differences between professional and elite road cyclists. Int J Sports Med. 1998 Jul;19(5):342–348. doi: 10.1055/s-2007-971928. [DOI] [PubMed] [Google Scholar]
- Lucía A., Sánchez O., Carvajal A., Chicharro J. L. Analysis of the aerobic-anaerobic transition in elite cyclists during incremental exercise with the use of electromyography. Br J Sports Med. 1999 Jun;33(3):178–185. doi: 10.1136/bjsm.33.3.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oshima Y., Miyamoto T., Tanaka S., Wadazumi T., Kurihara N., Fujimoto S. Relationship between isocapnic buffering and maximal aerobic capacity in athletes. Eur J Appl Physiol Occup Physiol. 1997;76(5):409–414. doi: 10.1007/s004210050269. [DOI] [PubMed] [Google Scholar]
- Padilla S., Mujika I., Cuesta G., Goiriena J. J. Level ground and uphill cycling ability in professional road cycling. Med Sci Sports Exerc. 1999 Jun;31(6):878–885. doi: 10.1097/00005768-199906000-00017. [DOI] [PubMed] [Google Scholar]
- Poole D. C., Schaffartzik W., Knight D. R., Derion T., Kennedy B., Guy H. J., Prediletto R., Wagner P. D. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans. J Appl Physiol (1985) 1991 Oct;71(4):1245–1260. doi: 10.1152/jappl.1991.71.4.1245. [DOI] [PubMed] [Google Scholar]
- Röcker K., Striegel H., Freund T., Dickhuth H. H. Relative functional buffering capacity in 400-meter runners, long-distance runners and untrained individuals. Eur J Appl Physiol Occup Physiol. 1994;68(5):430–434. doi: 10.1007/BF00843741. [DOI] [PubMed] [Google Scholar]
- Sjödin B., Jacobs I., Svedenhag J. Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA. Eur J Appl Physiol Occup Physiol. 1982;49(1):45–57. doi: 10.1007/BF00428962. [DOI] [PubMed] [Google Scholar]
- Weston A. R., Myburgh K. H., Lindsay F. H., Dennis S. C., Noakes T. D., Hawley J. A. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appl Physiol Occup Physiol. 1997;75(1):7–13. doi: 10.1007/s004210050119. [DOI] [PubMed] [Google Scholar]
- White J. A., Quinn G., Al-Dawalibi M., Mulhall J. Seasonal changes in cyclists' performance. Part I. The British Olympic road race squad. Br J Sports Med. 1982 Mar;16(1):4–12. doi: 10.1136/bjsm.16.1.4. [DOI] [PMC free article] [PubMed] [Google Scholar]