Abstract
Background—Heart rate variability (HRV) describes the cyclic variations in heart rate and offers a non-invasive tool for investigating the modulatory effects of neural mechanisms elicited by the autonomic nervous system on intrinsic heart rate.
Objective—To introduce the HRV concept to healthy volunteers under control conditions and during scuba diving. In contrast with more established manoeuvres, diving probably activates both the sympathetic and parasympathetic nervous system through various stimuli—for example, through cardiac stretch receptors, respiration pattern, psychological stress, and diving reflex. A further aim of the study was to introduce a measure for determining a candidate's ability to scuba dive by providing (a) standard values for HRV measures (three from the time domain and three from the frequency domain) and (b) physiological responses to a strenuous manoeuvre such as scuba diving.
Methods—Twenty five trained scuba divers were investigated while diving under pool conditions (27°C) after the effects of head out immersion and submersion on HRV had been studied.
Results and conclusions—(a) Immersion under pool conditions is a powerful stimulus for both the sympathetic and parasympathetic nervous system. (b) As neither the heart rate nor the HRV changed on going from immersion to submersion, the parasympathetic activation was probably due to haemodynamic alterations. (c) All HRV measures showed an increase in the parasympathetic activity. (d) If a physiological HRV is a mechanism for providing adaptability and flexibility, diving should not provoke circulatory problems in healthy subjects. (e) Either a lower than normal HRV under control conditions or a reduction in HRV induced by diving would be unphysiological, and a scuba diving candidate showing such characteristics should be further investigated.
Key Words: immersion; submersion; scuba diving; autonomous nervous system; heart rate variability
Full Text
The Full Text of this article is available as a PDF (159.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Algra A., Tijssen J. G., Roelandt J. R., Pool J., Lubsen J. Heart rate variability from 24-hour electrocardiography and the 2-year risk for sudden death. Circulation. 1993 Jul;88(1):180–185. doi: 10.1161/01.cir.88.1.180. [DOI] [PubMed] [Google Scholar]
- Appel M. L., Berger R. D., Saul J. P., Smith J. M., Cohen R. J. Beat to beat variability in cardiovascular variables: noise or music? J Am Coll Cardiol. 1989 Nov 1;14(5):1139–1148. doi: 10.1016/0735-1097(89)90408-7. [DOI] [PubMed] [Google Scholar]
- Bianchi A., Bontempi B., Cerutti S., Gianoglio P., Comi G., Natali Sora M. G. Spectral analysis of heart rate variability signal and respiration in diabetic subjects. Med Biol Eng Comput. 1990 May;28(3):205–211. doi: 10.1007/BF02442668. [DOI] [PubMed] [Google Scholar]
- Bigger J. T., Jr, Fleiss J. L., Rolnitzky L. M., Steinman R. C., Schneider W. J. Time course of recovery of heart period variability after myocardial infarction. J Am Coll Cardiol. 1991 Dec;18(7):1643–1649. doi: 10.1016/0735-1097(91)90497-w. [DOI] [PubMed] [Google Scholar]
- Bigger J. T., Jr, Fleiss J. L., Rolnitzky L. M., Steinman R. C. Stability over time of heart period variability in patients with previous myocardial infarction and ventricular arrhythmias. The CAPS and ESVEM investigators. Am J Cardiol. 1992 Mar 15;69(8):718–723. doi: 10.1016/0002-9149(92)90493-i. [DOI] [PubMed] [Google Scholar]
- Bigger J. T., Jr, Fleiss J. L., Steinman R. C., Rolnitzky L. M., Kleiger R. E., Rottman J. N. Correlations among time and frequency domain measures of heart period variability two weeks after acute myocardial infarction. Am J Cardiol. 1992 Apr 1;69(9):891–898. doi: 10.1016/0002-9149(92)90788-z. [DOI] [PubMed] [Google Scholar]
- Bonde-Petersen F., Schultz-Pedersen L., Dragsted N. Peripheral and central blood flow in man during cold, thermoneutral, and hot water immersion. Aviat Space Environ Med. 1992 May;63(5):346–350. [PubMed] [Google Scholar]
- Brachmann J., Schweizer M., Hilbel T., Kübler W. Stellenwert neuer Verfahren zur Diagnoseverbesserung bei ventrikulären tachykarden Arrhythmien. Frequenzvariabilität, Spätpotentiale, Signalmittelung. Internist (Berl) 1993 May;34(5):417–422. [PubMed] [Google Scholar]
- Breuer H. W., Skyschally A., Schulz R., Martin C., Wehr M., Heusch G. Heart rate variability and circulating catecholamine concentrations during steady state exercise in healthy volunteers. Br Heart J. 1993 Aug;70(2):144–149. doi: 10.1136/hrt.70.2.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breuer H. W., Skyschally A., Wehr M., Schulz R., Heusch G. Schlechte Reproduzierbarkeit von Parametern der Herzfrequenzvariabilität. Z Kardiol. 1992 Sep;81(9):475–481. [PubMed] [Google Scholar]
- Brown T. E., Beightol L. A., Koh J., Eckberg D. L. Important influence of respiration on human R-R interval power spectra is largely ignored. J Appl Physiol (1985) 1993 Nov;75(5):2310–2317. doi: 10.1152/jappl.1993.75.5.2310. [DOI] [PubMed] [Google Scholar]
- Casolo G. C., Stroder P., Signorini C., Calzolari F., Zucchini M., Balli E., Sulla A., Lazzerini S. Heart rate variability during the acute phase of myocardial infarction. Circulation. 1992 Jun;85(6):2073–2079. doi: 10.1161/01.cir.85.6.2073. [DOI] [PubMed] [Google Scholar]
- Chess G. F., Tam R. M., Calaresu F. R. Influence of cardiac neural inputs on rhythmic variations of heart period in the cat. Am J Physiol. 1975 Mar;228(3):775–780. doi: 10.1152/ajplegacy.1975.228.3.775. [DOI] [PubMed] [Google Scholar]
- Claus J., Eisenriegler E., Grodzinski E., Hollenstein U., Jetté M., Jokiel R., Kottmann W. Besondere Gesichtspunkte des körperlichen Trainings während der Rehabilitationsphase von Koronarpatienten. Herz. 1991 Aug;16(4):199–209. [PubMed] [Google Scholar]
- Cook J. R., Bigger J. T., Jr, Kleiger R. E., Fleiss J. L., Steinman R. C., Rolnitzky L. M. Effect of atenolol and diltiazem on heart period variability in normal persons. J Am Coll Cardiol. 1991 Feb;17(2):480–484. doi: 10.1016/s0735-1097(10)80119-6. [DOI] [PubMed] [Google Scholar]
- Cripps T. R., Malik M., Farrell T. G., Camm A. J. Prognostic value of reduced heart rate variability after myocardial infarction: clinical evaluation of a new analysis method. Br Heart J. 1991 Jan;65(1):14–19. doi: 10.1136/hrt.65.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GAUER O. H. Die hydrostatische Wirkung von Bädern auf den Kreislauf; ein Beitrag zur Frage der reinen Volumenregulation. Dtsch Med J. 1955 Jul 15;6(13-14):462–466. [PubMed] [Google Scholar]
- Goldberger A. L. Is the normal heartbeat chaotic or homeostatic? News Physiol Sci. 1991 Apr;6:87–91. doi: 10.1152/physiologyonline.1991.6.2.87. [DOI] [PubMed] [Google Scholar]
- Guzzetti S., Piccaluga E., Casati R., Cerutti S., Lombardi F., Pagani M., Malliani A. Sympathetic predominance in essential hypertension: a study employing spectral analysis of heart rate variability. J Hypertens. 1988 Sep;6(9):711–717. doi: 10.1097/00004872-198809000-00004. [DOI] [PubMed] [Google Scholar]
- Hayano J., Sakakibara Y., Yamada A., Yamada M., Mukai S., Fujinami T., Yokoyama K., Watanabe Y., Takata K. Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am J Cardiol. 1991 Jan 15;67(2):199–204. doi: 10.1016/0002-9149(91)90445-q. [DOI] [PubMed] [Google Scholar]
- Hirsch J. A., Bishop B. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol. 1981 Oct;241(4):H620–H629. doi: 10.1152/ajpheart.1981.241.4.H620. [DOI] [PubMed] [Google Scholar]
- Hong S. K., Moore T. O., Seto G., Park H. K., Hiatt W. R., Bernauer E. M. Lung volumes and apneic bradycardia in divers. J Appl Physiol. 1970 Aug;29(2):172–176. doi: 10.1152/jappl.1970.29.2.172. [DOI] [PubMed] [Google Scholar]
- Hood W. B., Jr, Murray R. H., Urchel C. W., Bowers J. A., Goldman J. K. Circulatory effects of water immersion upon human subjects. Aerosp Med. 1968 Jun;39(6):579–584. [PubMed] [Google Scholar]
- Kamath M. V., Fallen E. L. Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function. Crit Rev Biomed Eng. 1993;21(3):245–311. [PubMed] [Google Scholar]
- Katona P. G., Jih F. Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol. 1975 Nov;39(5):801–805. doi: 10.1152/jappl.1975.39.5.801. [DOI] [PubMed] [Google Scholar]
- Kitney R. I., Fulton T., McDonald A. H., Linkens D. A. Transient interactions between blood pressure, respiration and heart rate in man. J Biomed Eng. 1985 Jul;7(3):217–224. doi: 10.1016/0141-5425(85)90022-6. [DOI] [PubMed] [Google Scholar]
- Kleiger R. E., Miller J. P., Bigger J. T., Jr, Moss A. J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987 Feb 1;59(4):256–262. doi: 10.1016/0002-9149(87)90795-8. [DOI] [PubMed] [Google Scholar]
- Lombardi F., Sandrone G., Pernpruner S., Sala R., Garimoldi M., Cerutti S., Baselli G., Pagani M., Malliani A. Heart rate variability as an index of sympathovagal interaction after acute myocardial infarction. Am J Cardiol. 1987 Dec 1;60(16):1239–1245. doi: 10.1016/0002-9149(87)90601-1. [DOI] [PubMed] [Google Scholar]
- Lown B., Verrier R. L. Neural activity and ventricular fibrillation. N Engl J Med. 1976 May 20;294(21):1165–1170. doi: 10.1056/NEJM197605202942107. [DOI] [PubMed] [Google Scholar]
- Malik M., Camm A. J. Heart rate variability and clinical cardiology. Br Heart J. 1994 Jan;71(1):3–6. doi: 10.1136/hrt.71.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malik M., Farrell T., Cripps T., Camm A. J. Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques. Eur Heart J. 1989 Dec;10(12):1060–1074. doi: 10.1093/oxfordjournals.eurheartj.a059428. [DOI] [PubMed] [Google Scholar]
- Malliani A., Pagani M., Lombardi F., Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991 Aug;84(2):482–492. doi: 10.1161/01.cir.84.2.482. [DOI] [PubMed] [Google Scholar]
- Moore T. O., Lin Y. C., Lally D. A., Hong S. K. Effects of temperature, immersion, and ambient pressure on human apneic bradycardia. J Appl Physiol. 1972 Jul;33(1):36–41. doi: 10.1152/jappl.1972.33.1.36. [DOI] [PubMed] [Google Scholar]
- Pagani M., Lombardi F., Guzzetti S., Rimoldi O., Furlan R., Pizzinelli P., Sandrone G., Malfatto G., Dell'Orto S., Piccaluga E. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986 Aug;59(2):178–193. doi: 10.1161/01.res.59.2.178. [DOI] [PubMed] [Google Scholar]
- Sagawa S., Miki K., Tajima F., Shiraki K. Cardiovascular responses to upright tilt in man during acute exposure to 3 atm abs air. Undersea Biomed Res. 1992 Mar;19(2):97–106. [PubMed] [Google Scholar]
- Saul J. P., Arai Y., Berger R. D., Lilly L. S., Colucci W. S., Cohen R. J. Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am J Cardiol. 1988 Jun 1;61(15):1292–1299. doi: 10.1016/0002-9149(88)91172-1. [DOI] [PubMed] [Google Scholar]
- Schwartz P. J., De Ferrari G. M. The influence of the autonomic nervous system on sudden cardiac death. Cardiology. 1987;74(4):297–309. doi: 10.1159/000174215. [DOI] [PubMed] [Google Scholar]
- Stein K. M., Borer J. S., Hochreiter C., Okin P. M., Herrold E. M., Devereux R. B., Kligfield P. Prognostic value and physiological correlates of heart rate variability in chronic severe mitral regurgitation. Circulation. 1993 Jul;88(1):127–135. doi: 10.1161/01.cir.88.1.127. [DOI] [PubMed] [Google Scholar]
- Vanoli E., Schwartz P. J. Sympathetic--parasympathetic interaction and sudden death. Basic Res Cardiol. 1990;85 (Suppl 1):305–321. doi: 10.1007/978-3-662-11038-6_25. [DOI] [PubMed] [Google Scholar]