Abstract
Background: Previous studies have shown an antiasthenic effect of citrulline/malate (CM) but the mechanism of action at the muscular level remains unknown.
Objective: To investigate the effects of CM supplementation on muscle energetics.
Methods: Eighteen men complaining of fatigue but with no documented disease were included in the study. A rest-exercise (finger flexions)-recovery protocol was performed twice before (D-7 and D0), three times during (D3, D8, D15), and once after (D22) 15 days of oral supplementation with 6 g/day CM. Metabolism of the flexor digitorum superficialis was analysed by 31P magnetic resonance spectroscopy at 4.7 T.
Results: Metabolic variables measured twice before CM ingestion showed no differences, indicating good reproducibility of measurements and no learning effect from repeating the exercise protocol. CM ingestion resulted in a significant reduction in the sensation of fatigue, a 34% increase in the rate of oxidative ATP production during exercise, and a 20% increase in the rate of phosphocreatine recovery after exercise, indicating a larger contribution of oxidative ATP synthesis to energy production. Considering subjects individually and variables characterising aerobic function, extrema were measured after either eight or 15 days of treatment, indicating chronological heterogeneity of treatment induced changes. One way analysis of variance confirmed improved aerobic function, which may be the result of an enhanced malate supply activating ATP production from the tricarboxylic acid cycle through anaplerotic reactions.
Conclusion: The changes in muscle metabolism produced by CM treatment indicate that CM may promote aerobic energy production.
Full Text
The Full Text of this article is available as a PDF (185.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bendahan D., Confort-Gouny S., Kozak-Reiss G., Cozzone P. J. Heterogeneity of metabolic response to muscular exercise in humans. New criteria of invariance defined by in vivo phosphorus-31 NMR spectroscopy. FEBS Lett. 1990 Oct 15;272(1-2):155–158. doi: 10.1016/0014-5793(90)80472-u. [DOI] [PubMed] [Google Scholar]
- Bendahan D., Confort-Gouny S., Kozak-Ribbens G., Cozzone P. J. 31-P NMR characterization of the metabolic anomalies associated with the lack of glycogen phosphorylase activity in human forearm muscle. Biochem Biophys Res Commun. 1992 May 29;185(1):16–21. doi: 10.1016/s0006-291x(05)80948-9. [DOI] [PubMed] [Google Scholar]
- Bendahan D., Desnuelle C., Vanuxem D., Confort-Gouny S., Figarella-Branger D., Pellissier J. F., Kozak-Ribbens G., Pouget J., Serratrice G., Cozzone P. J. 31P NMR spectroscopy and ergometer exercise test as evidence for muscle oxidative performance improvement with coenzyme Q in mitochondrial myopathies. Neurology. 1992 Jun;42(6):1203–1208. doi: 10.1212/wnl.42.6.1203. [DOI] [PubMed] [Google Scholar]
- Boska M. Estimating the ATP cost of force production in the human gastrocnemius/soleus muscle group using 31P MRS and 1H MRI. NMR Biomed. 1991 Aug;4(4):173–181. doi: 10.1002/nbm.1940040404. [DOI] [PubMed] [Google Scholar]
- Callis A., Magnan de Bornier B., Serrano J. J., Bellet H., Saumade R. Activity of citrulline malate on acid-base balance and blood ammonia and amino acid levels. Study in the animal and in man. Arzneimittelforschung. 1991 Jun;41(6):660–663. [PubMed] [Google Scholar]
- Conley K. E., Kushmerick M. J., Jubrias S. A. Glycolysis is independent of oxygenation state in stimulated human skeletal muscle in vivo. J Physiol. 1998 Sep 15;511(Pt 3):935–945. doi: 10.1111/j.1469-7793.1998.935bg.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibala M. J., MacLean D. A., Graham T. E., Saltin B. Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise. Am J Physiol. 1998 Aug;275(2 Pt 1):E235–E242. doi: 10.1152/ajpendo.1998.275.2.E235. [DOI] [PubMed] [Google Scholar]
- Gibala M. J., Tarnopolsky M. A., Graham T. E. Tricarboxylic acid cycle intermediates in human muscle at rest and during prolonged cycling. Am J Physiol. 1997 Feb;272(2 Pt 1):E239–E244. doi: 10.1152/ajpendo.1997.272.2.E239. [DOI] [PubMed] [Google Scholar]
- Gibala M. J., Young M. E., Taegtmeyer H. Anaplerosis of the citric acid cycle: role in energy metabolism of heart and skeletal muscle. Acta Physiol Scand. 2000 Apr;168(4):657–665. doi: 10.1046/j.1365-201x.2000.00717.x. [DOI] [PubMed] [Google Scholar]
- Goubel F., Vanhoutte C., Allaf O., Verleye M., Gillardin J. M. Citrulline malate limits increase in muscle fatigue induced by bacterial endotoxins. Can J Physiol Pharmacol. 1997 Mar;75(3):205–207. [PubMed] [Google Scholar]
- Harris R. C., Hultman E., Nordesjö L. O. Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest. 1974 Apr;33(2):109–120. [PubMed] [Google Scholar]
- Haseler L. J., Hogan M. C., Richardson R. S. Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability. J Appl Physiol (1985) 1999 Jun;86(6):2013–2018. doi: 10.1152/jappl.1999.86.6.2013. [DOI] [PubMed] [Google Scholar]
- Hochachka P. W., Mommsen T. P. Protons and anaerobiosis. Science. 1983 Mar 25;219(4591):1391–1397. doi: 10.1126/science.6298937. [DOI] [PubMed] [Google Scholar]
- Huskisson E. C. Measurement of pain. Lancet. 1974 Nov 9;2(7889):1127–1131. doi: 10.1016/s0140-6736(74)90884-8. [DOI] [PubMed] [Google Scholar]
- Kemp G. J., Taylor D. J., Styles P., Radda G. K. The production, buffering and efflux of protons in human skeletal muscle during exercise and recovery. NMR Biomed. 1993 Jan-Feb;6(1):73–83. doi: 10.1002/nbm.1940060112. [DOI] [PubMed] [Google Scholar]
- Kemp G. J., Thompson C. H., Barnes P. R., Radda G. K. Comparisons of ATP turnover in human muscle during ischemic and aerobic exercise using 31P magnetic resonance spectroscopy. Magn Reson Med. 1994 Mar;31(3):248–258. doi: 10.1002/mrm.1910310303. [DOI] [PubMed] [Google Scholar]
- Kemp G. J., Thompson C. H., Taylor D. J., Radda G. K. ATP production and mechanical work in exercising skeletal muscle: a theoretical analysis applied to 31P magnetic resonance spectroscopic studies of dialyzed uremic patients. Magn Reson Med. 1995 May;33(5):601–609. doi: 10.1002/mrm.1910330504. [DOI] [PubMed] [Google Scholar]
- Kent-Braun J. A., McCully K. K., Chance B. Metabolic effects of training in humans: a 31P-MRS study. J Appl Physiol (1985) 1990 Sep;69(3):1165–1170. doi: 10.1152/jappl.1990.69.3.1165. [DOI] [PubMed] [Google Scholar]
- Kushmerick M. J. Multiple equilibria of cations with metabolites in muscle bioenergetics. Am J Physiol. 1997 May;272(5 Pt 1):C1739–C1747. doi: 10.1152/ajpcell.1997.272.5.C1739. [DOI] [PubMed] [Google Scholar]
- Kushmerick M. J. Normal muscle energy metabolism. Adv Exp Med Biol. 1984;178:339–350. doi: 10.1007/978-1-4684-4808-5_43. [DOI] [PubMed] [Google Scholar]
- Lodi R., Taylor D. J., Tabrizi S. J., Hilton-Jones D., Squier M. V., Seller A., Styles P., Schapira A. H. Normal in vivo skeletal muscle oxidative metabolism in sporadic inclusion body myositis assessed by 31P-magnetic resonance spectroscopy. Brain. 1998 Nov;121(Pt 11):2119–2126. doi: 10.1093/brain/121.11.2119. [DOI] [PubMed] [Google Scholar]
- Mazzeo A. R., Levy G. C. An evaluation of new processing protocols for in vivo NMR spectroscopy. Magn Reson Med. 1991 Feb;17(2):483–495. doi: 10.1002/mrm.1910170219. [DOI] [PubMed] [Google Scholar]
- McCully K. K., Boden B. P., Tuchler M., Fountain M. R., Chance B. Wrist flexor muscles of elite rowers measured with magnetic resonance spectroscopy. J Appl Physiol (1985) 1989 Sep;67(3):926–932. doi: 10.1152/jappl.1989.67.3.926. [DOI] [PubMed] [Google Scholar]
- McCully K. K., Iotti S., Kendrick K., Wang Z., Posner J. D., Leigh J., Jr, Chance B. Simultaneous in vivo measurements of HbO2 saturation and PCr kinetics after exercise in normal humans. J Appl Physiol (1985) 1994 Jul;77(1):5–10. doi: 10.1152/jappl.1994.77.1.5. [DOI] [PubMed] [Google Scholar]
- McCully K. K., Kent J. A., Chance B. Application of 31P magnetic resonance spectroscopy to the study of athletic performance. Sports Med. 1988 May;5(5):312–321. doi: 10.2165/00007256-198805050-00003. [DOI] [PubMed] [Google Scholar]
- Moon R. B., Richards J. H. Determination of intracellular pH by 31P magnetic resonance. J Biol Chem. 1973 Oct 25;248(20):7276–7278. [PubMed] [Google Scholar]
- Paganini A. T., Foley J. M., Meyer R. A. Linear dependence of muscle phosphocreatine kinetics on oxidative capacity. Am J Physiol. 1997 Feb;272(2 Pt 1):C501–C510. doi: 10.1152/ajpcell.1997.272.2.C501. [DOI] [PubMed] [Google Scholar]
- Sahlin K., Katz A., Broberg S. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am J Physiol. 1990 Nov;259(5 Pt 1):C834–C841. doi: 10.1152/ajpcell.1990.259.5.C834. [DOI] [PubMed] [Google Scholar]
- Taylor D. J., Bore P. J., Styles P., Gadian D. G., Radda G. K. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol Biol Med. 1983 Jul;1(1):77–94. [PubMed] [Google Scholar]
- Taylor D. J., Kemp G. J., Radda G. K. Bioenergetics of skeletal muscle in mitochondrial myopathy. J Neurol Sci. 1994 Dec 20;127(2):198–206. doi: 10.1016/0022-510x(94)90073-6. [DOI] [PubMed] [Google Scholar]
- Taylor D. J., Kemp G. J., Radda G. K. Bioenergetics of skeletal muscle in mitochondrial myopathy. J Neurol Sci. 1994 Dec 20;127(2):198–206. doi: 10.1016/0022-510x(94)90073-6. [DOI] [PubMed] [Google Scholar]
- Vialettes B., Paquis-Fluckinger V., Silvestre-Aillaud P., Ben Dahan D., Pelissier J. F., Etchary-Bouyx F., Raccah D., Gin H., Guillausseau P. J., Vanuxen D. Extra-pancreatic manifestations in diabetes secondary to mitochondrial DNA point mutation within the tRNALeu(UUR) gene. Diabetes Care. 1995 Jul;18(7):1023–1028. doi: 10.2337/diacare.18.7.1023. [DOI] [PubMed] [Google Scholar]
- Wagenmakers A. J. Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Exerc Sport Sci Rev. 1998;26:287–314. [PubMed] [Google Scholar]