Skip to main content
British Journal of Sports Medicine logoLink to British Journal of Sports Medicine
. 2003 Feb;37(1):67–71. doi: 10.1136/bjsm.37.1.67

Physiological factors associated with low bone mineral density in female endurance runners

M Burrows 1, A Nevill 1, S Bird 1, D Simpson 1
PMCID: PMC1724580  PMID: 12547747

Abstract

Objective: To explore potential factors that could be associated with low bone mineral density (BMD) in female endurance runners.

Methods: Fifty two female endurance runners (1500 m to marathon), aged 18–44 years, took part. Body fat percentage, lumbar spine BMD, and femoral neck BMD were measured using the Hologic QDR 4500w bone densitometer. Data on training, menstrual cycle status, osteoporosis, and health related factors were obtained by questionnaire. Dietary variables were assessed from a prospective seven day dietary record of macronutrients and micronutrients.

Results: The mean (SD) lumbar spine and femoral neck BMD were 1.11 (0.11) and 0.89 (0.12) g/cm2 respectively. A backward elimination regression analysis showed that age, body mass, body fat, distance run, magnesium, and zinc intake were the variables significantly associated with BMD. Lumbar spine BMD (g/cm2) = -1.90 + (0.0486 x age (years)) + (0.342 x log mass (kg)) - (0.000861 x age2 (years)) - (0.00128 x distance (km/week)), with an R2 = 30.1% (SEE = 0.089 (95% confidence interval (CI) 0.05 to 0.23); p<0.001). Femoral neck BMD (g/cm2) = -2.51 - (0.00989 x age (years)) + (0.720 x log mass (kg)) + (0.000951 x magnesium (mg/day)) -(0.0289 x zinc (mg/day)) - (0.00821 x body fat (%)) - (0.00226 x distance (km/week)), with an R2 = 50.2% (SEE = 0.100 (95% CI 0.06 to 0.22); p<0.001). The negative association between skeletal BMD and distance run suggested that participants who ran longer distances had a lower BMD of the lumbar spine and femoral neck. Further, the results indicated a positive association between body mass and BMD, and a negative association between body fat and BMD.

Conclusions: The results suggest a negative association between endurance running distance and lumbar spine and femoral neck BMD, with a positive association between body mass and femoral neck and lumbar spine BMD. However, longitudinal studies are required to assess directly the effect of endurance running and body mass on BMD, and to see if the addition of alternative exercise that would increase lean body mass would have a positive effect on BMD and therefore help to prevent osteoporosis.

Full Text

The Full Text of this article is available as a PDF (202.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alekel L., Clasey J. L., Fehling P. C., Weigel R. M., Boileau R. A., Erdman J. W., Stillman R. Contributions of exercise, body composition, and age to bone mineral density in premenopausal women. Med Sci Sports Exerc. 1995 Nov;27(11):1477–1485. [PubMed] [Google Scholar]
  2. Bailey D. A., Faulkner R. A., McKay H. A. Growth, physical activity, and bone mineral acquisition. Exerc Sport Sci Rev. 1996;24:233–266. [PubMed] [Google Scholar]
  3. Bass S., Pearce G., Bradney M., Hendrich E., Delmas P. D., Harding A., Seeman E. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res. 1998 Mar;13(3):500–507. doi: 10.1359/jbmr.1998.13.3.500. [DOI] [PubMed] [Google Scholar]
  4. Bauer D. C., Browner W. S., Cauley J. A., Orwoll E. S., Scott J. C., Black D. M., Tao J. L., Cummings S. R. Factors associated with appendicular bone mass in older women. The Study of Osteoporotic Fractures Research Group. Ann Intern Med. 1993 May 1;118(9):657–665. doi: 10.7326/0003-4819-118-9-199305010-00001. [DOI] [PubMed] [Google Scholar]
  5. Bemben D. A., Boileau R. A., Bahr J. M., Nelson R. A., Misner J. E. Effects of oral contraceptives on hormonal and metabolic responses during exercise. Med Sci Sports Exerc. 1992 Apr;24(4):434–441. [PubMed] [Google Scholar]
  6. Bennell K., Matheson G., Meeuwisse W., Brukner P. Risk factors for stress fractures. Sports Med. 1999 Aug;28(2):91–122. doi: 10.2165/00007256-199928020-00004. [DOI] [PubMed] [Google Scholar]
  7. Bradney M., Pearce G., Naughton G., Sullivan C., Bass S., Beck T., Carlson J., Seeman E. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res. 1998 Dec;13(12):1814–1821. doi: 10.1359/jbmr.1998.13.12.1814. [DOI] [PubMed] [Google Scholar]
  8. Chilibeck P. D., Sale D. G., Webber C. E. Exercise and bone mineral density. Sports Med. 1995 Feb;19(2):103–122. doi: 10.2165/00007256-199519020-00003. [DOI] [PubMed] [Google Scholar]
  9. Cook S. D., Harding A. F., Thomas K. A., Morgan E. L., Schnurpfeil K. M., Haddad R. J., Jr Trabecular bone density and menstrual function in women runners. Am J Sports Med. 1987 Sep-Oct;15(5):503–507. doi: 10.1177/036354658701500514. [DOI] [PubMed] [Google Scholar]
  10. Cumming D. C. Exercise-associated amenorrhea, low bone density, and estrogen replacement therapy. Arch Intern Med. 1996 Oct 28;156(19):2193–2195. [PubMed] [Google Scholar]
  11. Drinkwater B. L., Nilson K., Chesnut C. H., 3rd, Bremner W. J., Shainholtz S., Southworth M. B. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med. 1984 Aug 2;311(5):277–281. doi: 10.1056/NEJM198408023110501. [DOI] [PubMed] [Google Scholar]
  12. Frost H. M. The role of changes in mechanical usage set points in the pathogenesis of osteoporosis. J Bone Miner Res. 1992 Mar;7(3):253–261. doi: 10.1002/jbmr.5650070303. [DOI] [PubMed] [Google Scholar]
  13. Grimston S. K., Willows N. D., Hanley D. A. Mechanical loading regime and its relationship to bone mineral density in children. Med Sci Sports Exerc. 1993 Nov;25(11):1203–1210. [PubMed] [Google Scholar]
  14. Hartard M., Bottermann P., Bartenstein P., Jeschke D., Schwaiger M. Effects on bone mineral density of low-dosed oral contraceptives compared to and combined with physical activity. Contraception. 1997 Feb;55(2):87–90. doi: 10.1016/s0010-7824(96)00277-6. [DOI] [PubMed] [Google Scholar]
  15. Heinonen A., Oja P., Kannus P., Sievänen H., Haapasalo H., Mänttäri A., Vuori I. Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone. 1995 Sep;17(3):197–203. doi: 10.1016/8756-3282(95)00151-3. [DOI] [PubMed] [Google Scholar]
  16. Karlsson M. K., Linden C., Karlsson C., Johnell O., Obrant K., Seeman E. Exercise during growth and bone mineral density and fractures in old age. Lancet. 2000 Feb 5;355(9202):469–470. doi: 10.1016/s0140-6736(00)82020-6. [DOI] [PubMed] [Google Scholar]
  17. Lindsay R., Tohme J., Kanders B. The effect of oral contraceptive use on vertebral bone mass in pre- and post-menopausal women. Contraception. 1986 Oct;34(4):333–340. doi: 10.1016/0010-7824(86)90086-7. [DOI] [PubMed] [Google Scholar]
  18. Lloyd T., Buchanan J. R., Bitzer S., Waldman C. J., Myers C., Ford B. G. Interrelationships of diet, athletic activity, menstrual status, and bone density in collegiate women. Am J Clin Nutr. 1987 Oct;46(4):681–684. doi: 10.1093/ajcn/46.4.681. [DOI] [PubMed] [Google Scholar]
  19. Loucks A. B. Effects of exercise training on the menstrual cycle: existence and mechanisms. Med Sci Sports Exerc. 1990 Jun;22(3):275–280. [PubMed] [Google Scholar]
  20. Loucks A. B., Verdun M., Heath E. M. Low energy availability, not stress of exercise, alters LH pulsatility in exercising women. J Appl Physiol (1985) 1998 Jan;84(1):37–46. doi: 10.1152/jappl.1998.84.1.37. [DOI] [PubMed] [Google Scholar]
  21. Morris F. L., Naughton G. A., Gibbs J. L., Carlson J. S., Wark J. D. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res. 1997 Sep;12(9):1453–1462. doi: 10.1359/jbmr.1997.12.9.1453. [DOI] [PubMed] [Google Scholar]
  22. Nevill A. M., Holder R. L. Modelling health-related performance indices. Ann Hum Biol. 2000 Nov-Dec;27(6):543–559. doi: 10.1080/03014460050178650. [DOI] [PubMed] [Google Scholar]
  23. Nguyen T., Sambrook P., Kelly P., Jones G., Lord S., Freund J., Eisman J. Prediction of osteoporotic fractures by postural instability and bone density. BMJ. 1993 Oct 30;307(6912):1111–1115. doi: 10.1136/bmj.307.6912.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Okano H., Mizunuma H., Soda M., Matsui H., Aoki I., Honjo S., Ibuki Y. Effects of exercise and amenorrhea on bone mineral density in teenage runners. Endocr J. 1995 Apr;42(2):271–276. doi: 10.1507/endocrj.42.271. [DOI] [PubMed] [Google Scholar]
  25. Prior J. C., Kirkland S. A., Joseph L., Kreiger N., Murray T. M., Hanley D. A., Adachi J. D., Vigna Y. M., Berger C., Blondeau L. Oral contraceptive use and bone mineral density in premenopausal women: cross-sectional, population-based data from the Canadian Multicentre Osteoporosis Study. CMAJ. 2001 Oct 16;165(8):1023–1029. [PMC free article] [PubMed] [Google Scholar]
  26. Riggs B. L., Wahner H. W., Dunn W. L., Mazess R. B., Offord K. P., Melton L. J., 3rd Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J Clin Invest. 1981 Feb;67(2):328–335. doi: 10.1172/JCI110039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Robinson T. L., Snow-Harter C., Taaffe D. R., Gillis D., Shaw J., Marcus R. Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea. J Bone Miner Res. 1995 Jan;10(1):26–35. doi: 10.1002/jbmr.5650100107. [DOI] [PubMed] [Google Scholar]
  28. Rubin C. T., Lanyon L. E. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int. 1985 Jul;37(4):411–417. doi: 10.1007/BF02553711. [DOI] [PubMed] [Google Scholar]
  29. Snow-Harter C. M. Bone health and prevention of osteoporosis in active and athletic women. Clin Sports Med. 1994 Apr;13(2):389–404. [PubMed] [Google Scholar]
  30. Snow-Harter C., Bouxsein M. L., Lewis B. T., Carter D. R., Marcus R. Effects of resistance and endurance exercise on bone mineral status of young women: a randomized exercise intervention trial. J Bone Miner Res. 1992 Jul;7(7):761–769. doi: 10.1002/jbmr.5650070706. [DOI] [PubMed] [Google Scholar]
  31. Sowers M., Kshirsagar A., Crutchfield M., Updike S. Body composition, age and femoral bone mass of young adult women. Ann Epidemiol. 1991 Feb;1(3):245–254. doi: 10.1016/1047-2797(91)90003-u. [DOI] [PubMed] [Google Scholar]
  32. West R. V. The female athlete. The triad of disordered eating, amenorrhoea and osteoporosis. Sports Med. 1998 Aug;26(2):63–71. doi: 10.2165/00007256-199826020-00001. [DOI] [PubMed] [Google Scholar]
  33. Zanker C. L. Bone metabolism in exercise associated amenorrhoea: the importance of nutrition. Br J Sports Med. 1999 Aug;33(4):228–229. [PubMed] [Google Scholar]
  34. Zanker C. L., Swaine I. L. Relation between bone turnover, oestradiol, and energy balance in women distance runners. Br J Sports Med. 1998 Jun;32(2):167–171. doi: 10.1136/bjsm.32.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zanker C. L., Swaine I. L. Responses of bone turnover markers to repeated endurance running in humans under conditions of energy balance or energy restriction. Eur J Appl Physiol. 2000 Nov;83(4 -5):434–440. doi: 10.1007/s004210000293. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Sports Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES