Skip to main content
British Journal of Sports Medicine logoLink to British Journal of Sports Medicine
. 2003 Apr;37(2):154–159. doi: 10.1136/bjsm.37.2.154

Effect of cycling cadence on subsequent 3 km running performance in well trained triathletes

T Bernard 1, F Vercruyssen 1, F Grego 1, C Hausswirth 1, R Lepers 1, J Vallier 1, J Brisswalter 1, V Vleck 1
PMCID: PMC1724616  PMID: 12663359

Abstract

Objectives: To investigate the effect of three cycling cadences on a subsequent 3000 m track running performance in well trained triathletes.

Methods: Nine triathletes completed a maximal cycling test, three cycle-run succession sessions (20 minutes of cycling + a 3000 m run) in random order, and one isolated run (3000 m). During the cycling bout of the cycle-run sessions, subjects had to maintain for 20 minutes one of the three cycling cadences corresponding to 60, 80, and 100 rpm. The metabolic intensity during these cycling bouts corresponded approximately to the cycling competition intensity of our subjects during a sprint triathlon (> 80% Inline graphicO2max).

Results: A significant effect of the prior cycling exercise was found on middle distance running performance without any cadence effect (625.7 (40.1), 630.0 (44.8), 637.7 (57.9), and 583.0 (28.3) seconds for the 60 rpm run, 80 rpm run, 100 rpm run, and isolated run respectively). However, during the first 500 m of the run, stride rate and running velocity were significantly higher after cycling at 80 or 100 rpm than at 60 rpm (p<0.05). Furthermore, the choice of 60 rpm was associated with a higher fraction of Inline graphicO2max sustained during running compared with the other conditions (p<0.05).

Conclusions: The results confirm the alteration in running performance completed after the cycling event compared with the isolated run. However, no significant effect of the cadence was observed within the range usually used by triathletes.

Full Text

The Full Text of this article is available as a PDF (217.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balmer J., Davison R. C., Coleman D. A., Bird S. R. The validity of power output recorded during exercise performance tests using a Kingcycle air-braked cycle ergometer when compared with an SRM powermeter. Int J Sports Med. 2000 Apr;21(3):195–199. doi: 10.1055/s-2000-9466. [DOI] [PubMed] [Google Scholar]
  2. Bigland-Ritchie B., Woods J. J. Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve. 1984 Nov-Dec;7(9):691–699. doi: 10.1002/mus.880070902. [DOI] [PubMed] [Google Scholar]
  3. Brandon L. J. Physiological factors associated with middle distance running performance. Sports Med. 1995 Apr;19(4):268–277. doi: 10.2165/00007256-199519040-00004. [DOI] [PubMed] [Google Scholar]
  4. Brisswalter J., Hausswirth C., Smith D., Vercruyssen F., Vallier J. M. Energetically optimal cadence vs. freely-chosen cadence during cycling: effect of exercise duration. Int J Sports Med. 2000 Jan;21(1):60–64. doi: 10.1055/s-2000-8857. [DOI] [PubMed] [Google Scholar]
  5. Coast J. R., Welch H. G. Linear increase in optimal pedal rate with increased power output in cycle ergometry. Eur J Appl Physiol Occup Physiol. 1985;53(4):339–342. doi: 10.1007/BF00422850. [DOI] [PubMed] [Google Scholar]
  6. Fitts R. H. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994 Jan;74(1):49–94. doi: 10.1152/physrev.1994.74.1.49. [DOI] [PubMed] [Google Scholar]
  7. Garside I., Doran D. A. Effects of bicycle frame ergonomics on triathlon 10-km running performance. J Sports Sci. 2000 Oct;18(10):825–833. doi: 10.1080/026404100419883. [DOI] [PubMed] [Google Scholar]
  8. Guezennec C. Y., Vallier J. M., Bigard A. X., Durey A. Increase in energy cost of running at the end of a triathlon. Eur J Appl Physiol Occup Physiol. 1996;73(5):440–445. doi: 10.1007/BF00334421. [DOI] [PubMed] [Google Scholar]
  9. Hagan R. D., Weis S. E., Raven P. B. Effect of pedal rate on cardiorespiratory responses during continuous exercise. Med Sci Sports Exerc. 1992 Oct;24(10):1088–1095. [PubMed] [Google Scholar]
  10. Hausswirth C., Bigard A. X., Guezennec C. Y. Relationships between running mechanics and energy cost of running at the end of a triathlon and a marathon. Int J Sports Med. 1997 Jul;18(5):330–339. doi: 10.1055/s-2007-972642. [DOI] [PubMed] [Google Scholar]
  11. Hausswirth C., Bigard A. X., Le Chevalier J. M. The Cosmed K4 telemetry system as an accurate device for oxygen uptake measurements during exercise. Int J Sports Med. 1997 Aug;18(6):449–453. doi: 10.1055/s-2007-972662. [DOI] [PubMed] [Google Scholar]
  12. Hausswirth C., Lehénaff D., Dréano P., Savonen K. Effects of cycling alone or in a sheltered position on subsequent running performance during a triathlon. Med Sci Sports Exerc. 1999 Apr;31(4):599–604. doi: 10.1097/00005768-199904000-00018. [DOI] [PubMed] [Google Scholar]
  13. Hausswirth C., Lehénaff D. Physiological demands of running during long distance runs and triathlons. Sports Med. 2001;31(9):679–689. doi: 10.2165/00007256-200131090-00004. [DOI] [PubMed] [Google Scholar]
  14. Howley E. T., Bassett D. R., Jr, Welch H. G. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995 Sep;27(9):1292–1301. [PubMed] [Google Scholar]
  15. Hue O., Le Gallais D., Chollet D., Boussana A., Préfaut C. The influence of prior cycling on biomechanical and cardiorespiratory response profiles during running in triathletes. Eur J Appl Physiol Occup Physiol. 1998;77(1-2):98–105. doi: 10.1007/s004210050306. [DOI] [PubMed] [Google Scholar]
  16. Hue O., Le Gallais D., Chollet D., Préfaut C. Ventilatory threshold and maximal oxygen uptake in present triathletes. Can J Appl Physiol. 2000 Apr;25(2):102–113. doi: 10.1139/h00-007. [DOI] [PubMed] [Google Scholar]
  17. Kreider R. B., Boone T., Thompson W. R., Burkes S., Cortes C. W. Cardiovascular and thermal responses of triathlon performance. Med Sci Sports Exerc. 1988 Aug;20(4):385–390. doi: 10.1249/00005768-198808000-00010. [DOI] [PubMed] [Google Scholar]
  18. Lepers R., Millet G. Y., Maffiuletti N. A. Effect of cycling cadence on contractile and neural properties of knee extensors. Med Sci Sports Exerc. 2001 Nov;33(11):1882–1888. doi: 10.1097/00005768-200111000-00013. [DOI] [PubMed] [Google Scholar]
  19. Lepers R., Millet G. Y., Maffiuletti N. A., Hausswirth C., Brisswalter J. Effect of pedalling rates on physiological response during endurance cycling. Eur J Appl Physiol. 2001 Aug;85(3-4):392–395. doi: 10.1007/s004210100465. [DOI] [PubMed] [Google Scholar]
  20. Marsh A. P., Martin P. E. Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences. Med Sci Sports Exerc. 1997 Sep;29(9):1225–1232. doi: 10.1097/00005768-199709000-00016. [DOI] [PubMed] [Google Scholar]
  21. Marsh A. P., Martin P. E. The association between cycling experience and preferred and most economical cadences. Med Sci Sports Exerc. 1993 Nov;25(11):1269–1274. [PubMed] [Google Scholar]
  22. Millet G. P., Vleck V. E. Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations for training. Br J Sports Med. 2000 Oct;34(5):384–390. doi: 10.1136/bjsm.34.5.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Neptune R. R., Hull M. L. A theoretical analysis of preferred pedaling rate selection in endurance cycling. J Biomech. 1999 Apr;32(4):409–415. doi: 10.1016/s0021-9290(98)00182-1. [DOI] [PubMed] [Google Scholar]
  24. Paavolainen L. M., Nummela A. T., Rusko H. K. Neuromuscular characteristics and muscle power as determinants of 5-km running performance. Med Sci Sports Exerc. 1999 Jan;31(1):124–130. doi: 10.1097/00005768-199901000-00020. [DOI] [PubMed] [Google Scholar]
  25. Pyne D. B., Boston T., Martin D. T., Logan A. Evaluation of the Lactate Pro blood lactate analyser. Eur J Appl Physiol. 2000 May;82(1-2):112–116. doi: 10.1007/s004210050659. [DOI] [PubMed] [Google Scholar]
  26. Vercruyssen F., Hausswirth C., Smith D., Brisswalter J. Effect of exercise duration on optimal pedaling rate choice in triathletes. Can J Appl Physiol. 2001 Feb;26(1):44–54. [PubMed] [Google Scholar]
  27. Vercruyssen Fabrice, Brisswalter Jeanick, Hausswirth Christophe, Bernard Thierry, Bernard Olivier, Vallier Jean-Marc. Influence of cycling cadence on subsequent running performance in triathletes. Med Sci Sports Exerc. 2002 Mar;34(3):530–536. doi: 10.1097/00005768-200203000-00022. [DOI] [PubMed] [Google Scholar]
  28. Wasserman K., Whipp B. J., Koyl S. N., Beaver W. L. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973 Aug;35(2):236–243. doi: 10.1152/jappl.1973.35.2.236. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Sports Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES