Skip to main content
British Journal of Sports Medicine logoLink to British Journal of Sports Medicine
. 2003 Apr;37(2):119–125. doi: 10.1136/bjsm.37.2.119

Effects of prior concentric training on eccentric exercise induced muscle damage

N Gleeson 1, R Eston 1, V Marginson 1, M McHugh 1, S Bird 1
PMCID: PMC1724618  PMID: 12663352

Abstract

Background: Exercise induced muscle damage (EIMD) from strenuous unaccustomed eccentric exercise is well documented. So too is the observation that a prior bout of eccentric exercise reduces the severity of symptoms of EIMD. This has been attributed to an increase in sarcomeres in series. Recent studies have suggested that prior concentric training increases the susceptibility of muscle to EIMD following eccentric exercise. This has been attributed to a reduction of sarcomeres in series, which decreases muscle compliance and changes the length-tension relation of muscle contraction.

Objective: To assess the effects of prior concentric training on the severity of EIMD.

Methods: Four men and four women (mean (SD) age 21.1 (0.8) years) followed a four week concentric training programme. The elbow flexor musculature of the non-dominant arm was trained at 60% of one repetition maximum dynamic concentric strength performance, three times a week, increasing to 70% by week 3. After three days of rest, participants performed 50 maximal isokinetic eccentric contractions on both arms. All participants gave written informed consent before taking part in this study, which was approved by the school ethics committee. Strength, relaxed arm angle (RAA), arm circumference, and soreness on active extension and flexion were recorded immediately before eccentric exercise, one hour after, and at 24 hour intervals for three days. Data were analysed with fully repeated measures analyses of variance.

Results: Strength retention was significantly (p<0.01) greater in the control arm than the trained arm (84.0 (13.7)%, 90.4 (14.7)%, 95.2 (10.5)%, 103.5 (7.6)% v 75.5 (11.3)%, 77.6 (15.3)%, 80.1 (13.9)%, 80.9 (12.5)%) at one, 24, 48, and 72 hours respectively. Similarly, soreness was greater in the trained arm (0.7 (0.6), 3.1 (1.4), 3.0 (1.5), 1.9 (2.3)) than in the untrained arm (0 (0.2), 1.6 (1.3), 1.4 (0.6), 0.6 (0.4)) at one, 24, 48, and 72 hours respectively (p<0.05). Concentric training induced a significant reduction in RAA (165.2 (6.7)° v 157.3 (4.9)°) before the eccentric exercise bout (p<0.01). This was further reduced and remained lower in the trained arm at all time points after the eccentric exercise (p<0.01). The arm circumference of the concentrically trained arm was significantly greater than baseline (p<0.05) at 72 hours (30.3 (2.9) v 29.8 (3.3) cm).

Conclusions: These findings extend the understanding of the effects of prior concentric training in increasing the severity of EIMD to an upper limb exercise model. The inclusion of concentric conditioning in rehabilitation programmes tends to exacerbate the severity of EIMD in subsequent unaccustomed exercise. However, where concentric conditioning is indicated clinically, the net effect of conditioning outcome and EIMD may still confer enhanced strength performance and capability to dynamically stabilise a joint system.

Full Text

The Full Text of this article is available as a PDF (157.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong R. B. Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Med Sci Sports Exerc. 1984 Dec;16(6):529–538. [PubMed] [Google Scholar]
  2. Brown S. J., Child R. B., Day S. H., Donnelly A. E. Exercise-induced skeletal muscle damage and adaptation following repeated bouts of eccentric muscle contractions. J Sports Sci. 1997 Apr;15(2):215–222. doi: 10.1080/026404197367498. [DOI] [PubMed] [Google Scholar]
  3. Byrne C., Eston R. G., Edwards R. H. Characteristics of isometric and dynamic strength loss following eccentric exercise-induced muscle damage. Scand J Med Sci Sports. 2001 Jun;11(3):134–140. [PubMed] [Google Scholar]
  4. Child R. B., Saxton J. M., Donnelly A. E. Comparison of eccentric knee extensor muscle actions at two muscle lengths on indices of damage and angle-specific force production in humans. J Sports Sci. 1998 May;16(4):301–308. doi: 10.1080/02640419808559358. [DOI] [PubMed] [Google Scholar]
  5. Chleboun G. S., Howell J. N., Baker H. L., Ballard T. N., Graham J. L., Hallman H. L., Perkins L. E., Schauss J. H., Conatser R. R. Intermittent pneumatic compression effect on eccentric exercise-induced swelling, stiffness, and strength loss. Arch Phys Med Rehabil. 1995 Aug;76(8):744–749. doi: 10.1016/s0003-9993(95)80529-x. [DOI] [PubMed] [Google Scholar]
  6. Clarkson P. M., Nosaka K., Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc. 1992 May;24(5):512–520. [PubMed] [Google Scholar]
  7. Cleak M. J., Eston R. G. Delayed onset muscle soreness: mechanisms and management. J Sports Sci. 1992 Aug;10(4):325–341. doi: 10.1080/02640419208729932. [DOI] [PubMed] [Google Scholar]
  8. Cleak M. J., Eston R. G. Muscle soreness, swelling, stiffness and strength loss after intense eccentric exercise. Br J Sports Med. 1992 Dec;26(4):267–272. doi: 10.1136/bjsm.26.4.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Doyle J., Gleeson N. P., Rees D. Psychobiology and the athlete with anterior cruciate ligament (ACL) injury. Sports Med. 1998 Dec;26(6):379–393. doi: 10.2165/00007256-199826060-00002. [DOI] [PubMed] [Google Scholar]
  10. Enoka R. M. Muscle strength and its development. New perspectives. Sports Med. 1988 Sep;6(3):146–168. doi: 10.2165/00007256-198806030-00003. [DOI] [PubMed] [Google Scholar]
  11. Eston R. G., Lemmey A. B., McHugh P., Byrne C., Walsh S. E. Effect of stride length on symptoms of exercise-induced muscle damage during a repeated bout of downhill running. Scand J Med Sci Sports. 2000 Aug;10(4):199–204. doi: 10.1034/j.1600-0838.2000.010004199.x. [DOI] [PubMed] [Google Scholar]
  12. Eston R., Peters D. Effects of cold water immersion on the symptoms of exercise-induced muscle damage. J Sports Sci. 1999 Mar;17(3):231–238. doi: 10.1080/026404199366136. [DOI] [PubMed] [Google Scholar]
  13. Fridén J., Lieber R. L. Structural and mechanical basis of exercise-induced muscle injury. Med Sci Sports Exerc. 1992 May;24(5):521–530. [PubMed] [Google Scholar]
  14. Garrett W. E., Jr Muscle strain injuries: clinical and basic aspects. Med Sci Sports Exerc. 1990 Aug;22(4):436–443. [PubMed] [Google Scholar]
  15. Gleeson N. P., Mercer T. H. The utility of isokinetic dynamometry in the assessment of human muscle function. Sports Med. 1996 Jan;21(1):18–34. doi: 10.2165/00007256-199621010-00003. [DOI] [PubMed] [Google Scholar]
  16. Gleeson N. P., Reilly T., Mercer T. H., Rakowski S., Rees D. Influence of acute endurance activity on leg neuromuscular and musculoskeletal performance. Med Sci Sports Exerc. 1998 Apr;30(4):596–608. doi: 10.1097/00005768-199804000-00019. [DOI] [PubMed] [Google Scholar]
  17. Goldspink G., Tabary C., Tabary J. C., Tardieu C., Tardieu G. Effect of denervation on the adaptation of sarcomere number and muscle extensibility to the functional length of the muscle. J Physiol. 1974 Feb;236(3):733–742. doi: 10.1113/jphysiol.1974.sp010463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Griffiths R. I. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance. J Physiol. 1991 May;436:219–236. doi: 10.1113/jphysiol.1991.sp018547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hayat A., Tardieu C., Tabary J. C., Tabary C. Effects of denervation on the reduction of sarcomere number in cat soleus muscle immobilized in shortened position during seven days. J Physiol (Paris) 1978 Dec;74(6):563–567. [PubMed] [Google Scholar]
  20. Higbie E. J., Cureton K. J., Warren G. L., 3rd, Prior B. M. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol (1985) 1996 Nov;81(5):2173–2181. doi: 10.1152/jappl.1996.81.5.2173. [DOI] [PubMed] [Google Scholar]
  21. Hortobágyi T., Hill J. P., Houmard J. A., Fraser D. D., Lambert N. J., Israel R. G. Adaptive responses to muscle lengthening and shortening in humans. J Appl Physiol (1985) 1996 Mar;80(3):765–772. doi: 10.1152/jappl.1996.80.3.765. [DOI] [PubMed] [Google Scholar]
  22. Howell J. N., Chleboun G., Conatser R. Muscle stiffness, strength loss, swelling and soreness following exercise-induced injury in humans. J Physiol. 1993 May;464:183–196. doi: 10.1113/jphysiol.1993.sp019629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Häkkinen K. Neuromuscular and hormonal adaptations during strength and power training. A review. J Sports Med Phys Fitness. 1989 Mar;29(1):9–26. [PubMed] [Google Scholar]
  24. Jones C., Allen T., Talbot J., Morgan D. L., Proske U. Changes in the mechanical properties of human and amphibian muscle after eccentric exercise. Eur J Appl Physiol Occup Physiol. 1997;76(1):21–31. doi: 10.1007/s004210050208. [DOI] [PubMed] [Google Scholar]
  25. Lynn R., Morgan D. L. Decline running produces more sarcomeres in rat vastus intermedius muscle fibers than does incline running. J Appl Physiol (1985) 1994 Sep;77(3):1439–1444. doi: 10.1152/jappl.1994.77.3.1439. [DOI] [PubMed] [Google Scholar]
  26. Lynn R., Talbot J. A., Morgan D. L. Differences in rat skeletal muscles after incline and decline running. J Appl Physiol (1985) 1998 Jul;85(1):98–104. doi: 10.1152/jappl.1998.85.1.98. [DOI] [PubMed] [Google Scholar]
  27. Magid A., Law D. J. Myofibrils bear most of the resting tension in frog skeletal muscle. Science. 1985 Dec 13;230(4731):1280–1282. doi: 10.1126/science.4071053. [DOI] [PubMed] [Google Scholar]
  28. McHugh M. P., Connolly D. A., Eston R. G., Gleim G. W. Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sports Med. 1999 Mar;27(3):157–170. doi: 10.2165/00007256-199927030-00002. [DOI] [PubMed] [Google Scholar]
  29. McHugh M. P., Connolly D. A., Eston R. G., Kremenic I. J., Nicholas S. J., Gleim G. W. The role of passive muscle stiffness in symptoms of exercise-induced muscle damage. Am J Sports Med. 1999 Sep-Oct;27(5):594–599. doi: 10.1177/03635465990270050801. [DOI] [PubMed] [Google Scholar]
  30. Monster A. W., Chan H. Isometric force production by motor units of extensor digitorum communis muscle in man. J Neurophysiol. 1977 Nov;40(6):1432–1443. doi: 10.1152/jn.1977.40.6.1432. [DOI] [PubMed] [Google Scholar]
  31. Morgan D. L. New insights into the behavior of muscle during active lengthening. Biophys J. 1990 Feb;57(2):209–221. doi: 10.1016/S0006-3495(90)82524-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Narici M. V., Roi G. S., Landoni L., Minetti A. E., Cerretelli P. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol. 1989;59(4):310–319. doi: 10.1007/BF02388334. [DOI] [PubMed] [Google Scholar]
  33. Newham D. J., Jones D. A., Ghosh G., Aurora P. Muscle fatigue and pain after eccentric contractions at long and short length. Clin Sci (Lond) 1988 May;74(5):553–557. doi: 10.1042/cs0740553. [DOI] [PubMed] [Google Scholar]
  34. Nosaka K., Clarkson P. M. Influence of previous concentric exercise on eccentric exercise-induced muscle damage. J Sports Sci. 1997 Oct;15(5):477–483. doi: 10.1080/026404197367119. [DOI] [PubMed] [Google Scholar]
  35. Osternig L. R., Robertson R. N., Troxel R. K., Hansen P. Differential responses to proprioceptive neuromuscular facilitation (PNF) stretch techniques. Med Sci Sports Exerc. 1990 Feb;22(1):106–111. [PubMed] [Google Scholar]
  36. Ploutz-Snyder L. L., Tesch P. A., Dudley G. A. Increased vulnerability to eccentric exercise-induced dysfunction and muscle injury after concentric training. Arch Phys Med Rehabil. 1998 Jan;79(1):58–61. doi: 10.1016/s0003-9993(98)90209-x. [DOI] [PubMed] [Google Scholar]
  37. Rack P. M., Westbury D. R. The short range stiffness of active mammalian muscle and its effect on mechanical properties. J Physiol. 1974 Jul;240(2):331–350. doi: 10.1113/jphysiol.1974.sp010613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rowlands A. V., Eston R. G., Tilzey C. Effect of stride length manipulation on symptoms of exercise-induced muscle damage and the repeated bout effect. J Sports Sci. 2001 May;19(5):333–340. doi: 10.1080/02640410152006108. [DOI] [PubMed] [Google Scholar]
  39. Rutherford O. M., Jones D. A. The role of learning and coordination in strength training. Eur J Appl Physiol Occup Physiol. 1986;55(1):100–105. doi: 10.1007/BF00422902. [DOI] [PubMed] [Google Scholar]
  40. Saxton J. M., Donnelly A. E. Length-specific impairment of skeletal muscle contractile function after eccentric muscle actions in man. Clin Sci (Lond) 1996 Feb;90(2):119–125. doi: 10.1042/cs0900119. [DOI] [PubMed] [Google Scholar]
  41. Smith L. L. Acute inflammation: the underlying mechanism in delayed onset muscle soreness? Med Sci Sports Exerc. 1991 May;23(5):542–551. [PubMed] [Google Scholar]
  42. Walshe A. D., Wilson G. J., Murphy A. J. The validity and reliability of a test of lower body musculotendinous stiffness. Eur J Appl Physiol Occup Physiol. 1996;73(3-4):332–339. doi: 10.1007/BF02425495. [DOI] [PubMed] [Google Scholar]
  43. Whitehead N. P., Allen T. J., Morgan D. L., Proske U. Damage to human muscle from eccentric exercise after training with concentric exercise. J Physiol. 1998 Oct 15;512(Pt 2):615–620. doi: 10.1111/j.1469-7793.1998.615be.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Williams P. E., Goldspink G. The effect of immobilization on the longitudinal growth of striated muscle fibres. J Anat. 1973 Oct;116(Pt 1):45–55. [PMC free article] [PubMed] [Google Scholar]
  45. Wilson G. J., Murphy A. J., Pryor J. F. Musculotendinous stiffness: its relationship to eccentric, isometric, and concentric performance. J Appl Physiol (1985) 1994 Jun;76(6):2714–2719. doi: 10.1152/jappl.1994.76.6.2714. [DOI] [PubMed] [Google Scholar]
  46. Witzmann F. A., Kim D. H., Fitts R. H. Hindlimb immobilization: length-tension and contractile properties of skeletal muscle. J Appl Physiol Respir Environ Exerc Physiol. 1982 Aug;53(2):335–345. doi: 10.1152/jappl.1982.53.2.335. [DOI] [PubMed] [Google Scholar]
  47. Wood S. A., Morgan D. L., Proske U. Effects of repeated eccentric contractions on structure and mechanical properties of toad sartorius muscle. Am J Physiol. 1993 Sep;265(3 Pt 1):C792–C800. doi: 10.1152/ajpcell.1993.265.3.C792. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Sports Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES