Skip to main content
British Journal of Sports Medicine logoLink to British Journal of Sports Medicine
. 2003 Apr;37(2):140–143. doi: 10.1136/bjsm.37.2.140

Effects of electrical stimulation on VO2 kinetics and delta efficiency in healthy young men

M Perez 1, A Lucia 1, A Santalla 1, J Chicharro 1
PMCID: PMC1724624  PMID: 12663356

Abstract

Objective: To determine the effects of electrical stimulation (ES) on oxygen uptake (VO2) kinetics and delta efficiency (DE) during gradual exercise. The hypothesis was that ES would attenuate the VO2-workload relation and improve DE.

Methods: Fifteen healthy, untrained men (mean (SD) age 22 (5) years) were selected. Ten were electrostimulated on both quadriceps muscles with a frequency of 45–60 Hz, with 12 seconds of stimulation followed by eight seconds recovery for a total of 30 minutes a day, three days a week for six weeks. The remaining five subjects were assigned to a control group. A standardised exercise test on a cycle ergometer (ramp protocol, workload increases of 20 W/min) was performed by each subject before and after the experimental period. The slope of the VO2-power output (W) relation (ΔVO2/ΔW) and DE were calculated in each subject at moderate to high intensities (above the ventilatory threshold—that is, from 50–60% to 100% VO2max).

Results: The mean (SEM) values for ΔVO2/ΔW and DE had significantly decreased and increased respectively after the six week ES programme (p<0.05; 9.8 (0.2) v 8.6 (0.5) ml O2/W/min respectively and 27.7 (0.9) v 31.5 (1.4)% respectively).

Conclusions: ES could be used as a supplementary tool to improve two of the main determinants of endurance capacity, namely VO2 kinetics and work efficiency.

Full Text

The Full Text of this article is available as a PDF (147.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barstow T. J., Jones A. M., Nguyen P. H., Casaburi R. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise. J Appl Physiol (1985) 1996 Oct;81(4):1642–1650. doi: 10.1152/jappl.1996.81.4.1642. [DOI] [PubMed] [Google Scholar]
  2. Barstow T. J., Jones A. M., Nguyen P. H., Casaburi R. Influence of muscle fibre type and fitness on the oxygen uptake/power output slope during incremental exercise in humans. Exp Physiol. 2000 Jan;85(1):109–116. [PubMed] [Google Scholar]
  3. Beaver W. L., Wasserman K., Whipp B. J. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol (1985) 1986 Jun;60(6):2020–2027. doi: 10.1152/jappl.1986.60.6.2020. [DOI] [PubMed] [Google Scholar]
  4. Cabric M., Appell H. J., Resic A. Stereological analysis of capillaries in electrostimulated human muscles. Int J Sports Med. 1987 Oct;8(5):327–330. doi: 10.1055/s-2008-1025678. [DOI] [PubMed] [Google Scholar]
  5. Casaburi R., Storer T. W., Ben-Dov I., Wasserman K. Effect of endurance training on possible determinants of VO2 during heavy exercise. J Appl Physiol (1985) 1987 Jan;62(1):199–207. doi: 10.1152/jappl.1987.62.1.199. [DOI] [PubMed] [Google Scholar]
  6. Coggan A. R., Coyle E. F. Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol (1985) 1987 Dec;63(6):2388–2395. doi: 10.1152/jappl.1987.63.6.2388. [DOI] [PubMed] [Google Scholar]
  7. Coyle E. F. Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev. 1995;23:25–63. [PubMed] [Google Scholar]
  8. Coyle E. F., Sidossis L. S., Horowitz J. F., Beltz J. D. Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc. 1992 Jul;24(7):782–788. [PubMed] [Google Scholar]
  9. Crow M. T., Kushmerick M. J. Chemical energetics of slow- and fast-twitch muscles of the mouse. J Gen Physiol. 1982 Jan;79(1):147–166. doi: 10.1085/jgp.79.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gaesser G. A., Brooks G. A. Muscular efficiency during steady-rate exercise: effects of speed and work rate. J Appl Physiol. 1975 Jun;38(6):1132–1139. doi: 10.1152/jappl.1975.38.6.1132. [DOI] [PubMed] [Google Scholar]
  11. Gaesser G. A., Poole D. C. The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev. 1996;24:35–71. [PubMed] [Google Scholar]
  12. Gauthier J. M., Thériault R., Thériault G., Gélinas Y., Simoneau J. A. Electrical stimulation-induced changes in skeletal muscle enzymes of men and women. Med Sci Sports Exerc. 1992 Nov;24(11):1252–1256. [PubMed] [Google Scholar]
  13. Henson L. C., Poole D. C., Whipp B. J. Fitness as a determinant of oxygen uptake response to constant-load exercise. Eur J Appl Physiol Occup Physiol. 1989;59(1-2):21–28. doi: 10.1007/BF02396575. [DOI] [PubMed] [Google Scholar]
  14. Horowitz J. F., Sidossis L. S., Coyle E. F. High efficiency of type I muscle fibers improves performance. Int J Sports Med. 1994 Apr;15(3):152–157. doi: 10.1055/s-2007-1021038. [DOI] [PubMed] [Google Scholar]
  15. Ivy J. L., Chi M. M., Hintz C. S., Sherman W. M., Hellendall R. P., Lowry O. H. Progressive metabolite changes in individual human muscle fibers with increasing work rates. Am J Physiol. 1987 Jun;252(6 Pt 1):C630–C639. doi: 10.1152/ajpcell.1987.252.6.C630. [DOI] [PubMed] [Google Scholar]
  16. Jones A. M., Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000 Jun;29(6):373–386. doi: 10.2165/00007256-200029060-00001. [DOI] [PubMed] [Google Scholar]
  17. Lake D. A. Neuromuscular electrical stimulation. An overview and its application in the treatment of sports injuries. Sports Med. 1992 May;13(5):320–336. doi: 10.2165/00007256-199213050-00003. [DOI] [PubMed] [Google Scholar]
  18. Lucía Alejandro, Hoyos Jesús, Santalla Alfredo, Pérez Margarita, Chicharro José L. Kinetics of VO(2) in professional cyclists. Med Sci Sports Exerc. 2002 Feb;34(2):320–325. doi: 10.1097/00005768-200202000-00021. [DOI] [PubMed] [Google Scholar]
  19. Lucía Alejandro, Rivero José-Luis L., Pérez Margarita, Serrano Antonio L., Calbet José A. L., Santalla Alfredo, Chicharro José L. Determinants of VO(2) kinetics at high power outputs during a ramp exercise protocol. Med Sci Sports Exerc. 2002 Feb;34(2):326–331. doi: 10.1097/00005768-200202000-00022. [DOI] [PubMed] [Google Scholar]
  20. Martin L., Cometti G., Pousson M., Morlon B. Effect of electrical stimulation training on the contractile characteristics of the triceps surae muscle. Eur J Appl Physiol Occup Physiol. 1993;67(5):457–461. doi: 10.1007/BF00376463. [DOI] [PubMed] [Google Scholar]
  21. Myers J., Bellin D. Ramp exercise protocols for clinical and cardiopulmonary exercise testing. Sports Med. 2000 Jul;30(1):23–29. doi: 10.2165/00007256-200030010-00003. [DOI] [PubMed] [Google Scholar]
  22. Pichon F., Chatard J. C., Martin A., Cometti G. Electrical stimulation and swimming performance. Med Sci Sports Exerc. 1995 Dec;27(12):1671–1676. [PubMed] [Google Scholar]
  23. Poole D. C., Richardson R. S. Determinants of oxygen uptake. Implications for exercise testing. Sports Med. 1997 Nov;24(5):308–320. doi: 10.2165/00007256-199724050-00003. [DOI] [PubMed] [Google Scholar]
  24. Poole D. C., Ward S. A., Whipp B. J. The effects of training on the metabolic and respiratory profile of high-intensity cycle ergometer exercise. Eur J Appl Physiol Occup Physiol. 1990;59(6):421–429. doi: 10.1007/BF02388623. [DOI] [PubMed] [Google Scholar]
  25. Pérez Margarita, Lucia A., Rivero J-l L., Serrano A. L., Calbet J-A L., Delgado M. A., Chicharro J. L. Effects of transcutaneous short-term electrical stimulation on M. vastus lateralis characteristics of healthy young men. Pflugers Arch. 2002 Jan 22;443(5-6):866–874. doi: 10.1007/s00424-001-0769-6. [DOI] [PubMed] [Google Scholar]
  26. Rutherford O. M., Jones D. A. Contractile properties and fatiguability of the human adductor pollicis and first dorsal interosseus: a comparison of the effects of two chronic stimulation patterns. J Neurol Sci. 1988 Jul;85(3):319–331. doi: 10.1016/0022-510x(88)90190-6. [DOI] [PubMed] [Google Scholar]
  27. Scott O. M., Vrbová G., Hyde S. A., Dubowitz V. Effects of chronic low frequency electrical stimulation on normal human tibialis anterior muscle. J Neurol Neurosurg Psychiatry. 1985 Aug;48(8):774–781. doi: 10.1136/jnnp.48.8.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thériault R., Boulay M. R., Thériault G., Simoneau J. A. Electrical stimulation-induced changes in performance and fiber type proportion of human knee extensor muscles. Eur J Appl Physiol Occup Physiol. 1996;74(4):311–317. doi: 10.1007/BF02226926. [DOI] [PubMed] [Google Scholar]
  29. Vaquero A. F., Chicharro J. L., Gil L., Ruiz M. P., Sánchez V., Lucía A., Urrea S., Gómez M. A. Effects of muscle electrical stimulation on peak VO2 in cardiac transplant patients. Int J Sports Med. 1998 Jul;19(5):317–322. doi: 10.1055/s-2007-971924. [DOI] [PubMed] [Google Scholar]
  30. Whipp B. J., Davis J. A., Torres F., Wasserman K. A test to determine parameters of aerobic function during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1981 Jan;50(1):217–221. doi: 10.1152/jappl.1981.50.1.217. [DOI] [PubMed] [Google Scholar]
  31. Whipp B. J., Wasserman K. Efficiency of muscular work. J Appl Physiol. 1969 May;26(5):644–648. doi: 10.1152/jappl.1969.26.5.644. [DOI] [PubMed] [Google Scholar]
  32. Womack C. J., Davis S. E., Blumer J. L., Barrett E., Weltman A. L., Gaesser G. A. Slow component of O2 uptake during heavy exercise: adaptation to endurance training. J Appl Physiol (1985) 1995 Sep;79(3):838–845. doi: 10.1152/jappl.1995.79.3.838. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Sports Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES