Skip to main content
British Journal of Sports Medicine logoLink to British Journal of Sports Medicine
. 2003 Aug;37(4):345–350. doi: 10.1136/bjsm.37.4.345

Effect of testosterone and endurance training on glycogen metabolism in skeletal muscle of chronic hyperglycaemic female rats

E van Breda 1, H Keizer 1, H Kuipers 1, G Kranenburg 1
PMCID: PMC1724656  PMID: 12893722

Abstract

Objectives: To investigate in glycolytic and oxidative muscles of trained (nine weeks) and untrained hyperglycaemic female rats the effect of hyperandrogenicity and/or endurance training on energy metabolic properties.

Methods: Glycogen content and activity of muscle enzymes with regulatory functions in glycogen synthesis were examined.

Results: Testosterone treatment increased glycogen content of extensor digitorum longus (EDL) and soleus muscles of hyperglycaemic sedentary (18% and 84% respectively) and hyperglycaemic trained (7% and 16% respectively) rats. In both types of muscle of the hyperglycaemic testosterone treated exercised subgroup, less depletion of glycogen was found than in the untreated group (38% and 87% for EDL and soleus respectively).

Conclusions: The mechanisms by which training and/or hyperandrogenism alone or in combination elicits their specific effects are complex. Differences in sex, surgery, levels of hormones administered, and exercise model used may be the main reasons for the observed discrepancies. Conclusions from the results: (a) hyperandrogenism is not a primary cause of the development of insulin resistance; (b) glycogen content of slow and fast twitch muscle is increased by training through increased glycogen synthase activity. The most plausible explanation for differences between different muscle fibre types is the different levels of expression of androgen receptors in these fibres. Hyperandrogenicity therefore acts on energy metabolic variables of hyperglycaemic animals by different mechanisms in glycolytic and oxidative muscle fibres.

Full Text

The Full Text of this article is available as a PDF (145.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boden G., Jadali F., White J., Liang Y., Mozzoli M., Chen X., Coleman E., Smith C. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest. 1991 Sep;88(3):960–966. doi: 10.1172/JCI115399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borghouts L. B., Backx K., Mensink M. F., Keizer H. A. Effect of training intensity on insulin sensitivity as evaluated by insulin tolerance test. Eur J Appl Physiol Occup Physiol. 1999 Oct;80(5):461–466. doi: 10.1007/s004210050618. [DOI] [PubMed] [Google Scholar]
  3. Bruce C. R., Lee J. S., Hawley J. A. Postexercise muscle glycogen resynthesis in obese insulin-resistant Zucker rats. J Appl Physiol (1985) 2001 Oct;91(4):1512–1519. doi: 10.1152/jappl.2001.91.4.1512. [DOI] [PubMed] [Google Scholar]
  4. Capaldo B., Santoro D., Riccardi G., Perrotti N., Saccà L. Direct evidence for a stimulatory effect of hyperglycemia per se on peripheral glucose disposal in type II diabetes. J Clin Invest. 1986 Apr;77(4):1285–1290. doi: 10.1172/JCI112432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cibula D., Cífková R., Fanta M., Poledne R., Zivny J., Skibová J. Increased risk of non-insulin dependent diabetes mellitus, arterial hypertension and coronary artery disease in perimenopausal women with a history of the polycystic ovary syndrome. Hum Reprod. 2000 Apr;15(4):785–789. doi: 10.1093/humrep/15.4.785. [DOI] [PubMed] [Google Scholar]
  6. Coggan A. R., Spina R. J., Kohrt W. M., Holloszy J. O. Effect of prolonged exercise on muscle citrate concentration before and after endurance training in men. Am J Physiol. 1993 Feb;264(2 Pt 1):E215–E220. doi: 10.1152/ajpendo.1993.264.2.E215. [DOI] [PubMed] [Google Scholar]
  7. DANFORTH W. H. GLYCOGEN SYNTHETASE ACTIVITY IN SKELETAL MUSCLE. INTERCONVERSION OF TWO FORMS AND CONTROL OF GLYCOGEN SYNTHESIS. J Biol Chem. 1965 Feb;240:588–593. [PubMed] [Google Scholar]
  8. DeFronzo R. A. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 1988 Jun;37(6):667–687. doi: 10.2337/diab.37.6.667. [DOI] [PubMed] [Google Scholar]
  9. Eriksson K. F., Lindgärde F. Prevention of type 2 (non-insulin-dependent) diabetes mellitus by diet and physical exercise. The 6-year Malmö feasibility study. Diabetologia. 1991 Dec;34(12):891–898. doi: 10.1007/BF00400196. [DOI] [PubMed] [Google Scholar]
  10. Farrace S., Rossetti L. Hyperglycemia markedly enhances skeletal muscle glycogen synthase activity in diabetic, but not in normal conscious rats. Diabetes. 1992 Nov;41(11):1453–1463. doi: 10.2337/diab.41.11.1453. [DOI] [PubMed] [Google Scholar]
  11. Ferreira L. D., Bräu L., Nikolovski S., Raja G., Palmer T. N., Fournier P. A. Effect of streptozotocin-induced diabetes on glycogen resynthesis in fasted rats post-high-intensity exercise. Am J Physiol Endocrinol Metab. 2001 Jan;280(1):E83–E91. doi: 10.1152/ajpendo.2001.280.1.E83. [DOI] [PubMed] [Google Scholar]
  12. Franssila-Kallunki A. I., Eriksson J. G., Groop L. C. Time-dependent effect of hyperglycemia and hyperinsulinemia on oxidative and non-oxidative glucose metabolism in patients with NIDDM. Acta Endocrinol (Copenh) 1992 Aug;127(2):100–106. doi: 10.1530/acta.0.1270100. [DOI] [PubMed] [Google Scholar]
  13. Hager S. R., Jochen A. L., Kalkhoff R. K. Insulin resistance in normal rats infused with glucose for 72 h. Am J Physiol. 1991 Mar;260(3 Pt 1):E353–E362. doi: 10.1152/ajpendo.1991.260.3.E353. [DOI] [PubMed] [Google Scholar]
  14. Harris R. C., Hultman E., Nordesjö L. O. Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest. 1974 Apr;33(2):109–120. [PubMed] [Google Scholar]
  15. Henry J. P. Biological basis of the stress response. Integr Physiol Behav Sci. 1992 Jan-Mar;27(1):66–83. doi: 10.1007/BF02691093. [DOI] [PubMed] [Google Scholar]
  16. Holmäng A., Larsson B. M., Brzezinska Z., Björntorp P. Effects of short-term testosterone exposure on insulin sensitivity of muscles in female rats. Am J Physiol. 1992 Jun;262(6 Pt 1):E851–E855. doi: 10.1152/ajpendo.1992.262.6.E851. [DOI] [PubMed] [Google Scholar]
  17. Holmäng A., Svedberg J., Jennische E., Björntorp P. Effects of testosterone on muscle insulin sensitivity and morphology in female rats. Am J Physiol. 1990 Oct;259(4 Pt 1):E555–E560. doi: 10.1152/ajpendo.1990.259.4.E555. [DOI] [PubMed] [Google Scholar]
  18. Kadi F., Bonnerud P., Eriksson A., Thornell L. E. The expression of androgen receptors in human neck and limb muscles: effects of training and self-administration of androgenic-anabolic steroids. Histochem Cell Biol. 2000 Jan;113(1):25–29. doi: 10.1007/s004180050003. [DOI] [PubMed] [Google Scholar]
  19. Kelley D. E., Mandarino L. J. Hyperglycemia normalizes insulin-stimulated skeletal muscle glucose oxidation and storage in noninsulin-dependent diabetes mellitus. J Clin Invest. 1990 Dec;86(6):1999–2007. doi: 10.1172/JCI114935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kendrick Z. V., Ellis G. S. Effect of estradiol on tissue glycogen metabolism and lipid availability in exercised male rats. J Appl Physiol (1985) 1991 Nov;71(5):1694–1699. doi: 10.1152/jappl.1991.71.5.1694. [DOI] [PubMed] [Google Scholar]
  21. Kruszynska Y. T., Home P. D. Liver and muscle insulin sensitivity, glycogen concentration and glycogen synthase activity in a rat model of non-insulin-dependent diabetes. Diabetologia. 1988 May;31(5):304–309. doi: 10.1007/BF00277412. [DOI] [PubMed] [Google Scholar]
  22. Lisato G., Cusin I., Tiengo A., Del Prato S., Jeanrenaud B. The contribution of hyperglycaemia and hypoinsulinaemia to the insulin resistance of streptozotocin-diabetic rats. Diabetologia. 1992 Apr;35(4):310–315. doi: 10.1007/BF00401197. [DOI] [PubMed] [Google Scholar]
  23. Poretsky L. On the paradox of insulin-induced hyperandrogenism in insulin-resistant states. Endocr Rev. 1991 Feb;12(1):3–13. doi: 10.1210/edrv-12-1-3. [DOI] [PubMed] [Google Scholar]
  24. Portha B., Blondel O., Serradas P., McEvoy R., Giroix M. H., Kergoat M., Bailbe D. The rat models of non-insulin dependent diabetes induced by neonatal streptozotocin. Diabete Metab. 1989 Mar-Apr;15(2):61–75. [PubMed] [Google Scholar]
  25. RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
  26. Ramamani A., Aruldhas M. M., Govindarajulu P. Differential response of rat skeletal muscle glycogen metabolism to testosterone and estradiol. Can J Physiol Pharmacol. 1999 Apr;77(4):300–304. [PubMed] [Google Scholar]
  27. Revers R. R., Fink R., Griffin J., Olefsky J. M., Kolterman O. G. Influence of hyperglycemia on insulin's in vivo effects in type II diabetes. J Clin Invest. 1984 Mar;73(3):664–672. doi: 10.1172/JCI111258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schaffer S. W., Seyed-Mozaffari M., Cutcliff C. R., Wilson G. L. Postreceptor myocardial metabolic defect in a rat model of non-insulin-dependent diabetes mellitus. Diabetes. 1986 May;35(5):593–597. doi: 10.2337/diab.35.5.593. [DOI] [PubMed] [Google Scholar]
  29. Thorburn A. W., Gumbiner B., Brechtel G., Henry R. R. Effect of hyperinsulinemia and hyperglycemia on intracellular glucose and fat metabolism in healthy subjects. Diabetes. 1990 Jan;39(1):22–30. doi: 10.2337/diacare.39.1.22. [DOI] [PubMed] [Google Scholar]
  30. Vaag A., Damsbo P., Hother-Nielsen O., Beck-Nielsen H. Hyperglycaemia compensates for the defects in insulin-mediated glucose metabolism and in the activation of glycogen synthase in the skeletal muscle of patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992 Jan;35(1):80–88. doi: 10.1007/BF00400856. [DOI] [PubMed] [Google Scholar]
  31. Widén E., Ekstrand A., Saloranta C., Franssila-Kallunki A., Eriksson J., Schalin-Jäntti C., Groop L. Insulin resistance in type 2 (non-insulin-dependent) diabetic patients with hypertriglyceridaemia. Diabetologia. 1992 Dec;35(12):1140–1145. doi: 10.1007/BF00401367. [DOI] [PubMed] [Google Scholar]
  32. Xu X., De Pergola G., Björntorp P. The effects of androgens on the regulation of lipolysis in adipose precursor cells. Endocrinology. 1990 Feb;126(2):1229–1234. doi: 10.1210/endo-126-2-1229. [DOI] [PubMed] [Google Scholar]
  33. van Breda E., Keizer H. A., Geurten P., van Kranenburg G., Menheere P. P., Kuipers H., Glatz J. F. Modulation of glycogen metabolism of rat skeletal muscles by endurance training and testosterone treatment. Pflugers Arch. 1993 Aug;424(3-4):294–300. doi: 10.1007/BF00384355. [DOI] [PubMed] [Google Scholar]
  34. van Breda E., Keizer H. A., Vork M. M., Surtel D. A., de Jong Y. F., van der Vusse G. J., Glatz J. F. Modulation of fatty-acid-binding protein content of rat heart and skeletal muscle by endurance training and testosterone treatment. Pflugers Arch. 1992 Jun;421(2-3):274–279. doi: 10.1007/BF00374838. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Sports Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES