Abstract
Background: The reason for the higher incidence of anterior cruciate ligament injury from non-contact mechanisms in female athletes is not known. Stability of the joint from dynamic restraints occurs through proprioceptive and kinaesthetic mechanisms providing a flexion moment. Reflexive muscle activation is different between the sexes, but it is unclear if sex differences exist in the ability to dynamically stabilise joints through a neuromuscular feed forward process as measured by preactivation of the muscles.
Objective: To determine if the level of preactivation of the gastrocnemius and hamstring muscles during dynamic activity is affected by sex.
Methods: Thirty four healthy active subjects, evenly grouped by sex, participated in the study. Maximum voluntary contraction normalised electromyographic (EMG) activity of the quadriceps, hamstrings, and gastrocnemius muscles was recorded during downhill walking (0.92 m/s) and running (2.08 m/s) on a 15° declined treadmill. Preactivation of the EMG signal was calculated by setting a mark 150 milliseconds before foot strike, as indicated by a footswitch. Multiple t tests for sex differences of preactivity mean percentage (M-EMG%) during the downhill activities were performed.
Results: The female subjects had a higher M-EMG% for the medial hamstrings than the male subjects (31.73 (9.89) and 23.04 (8.59) respectively; t(2,32) = 2.732, p = 0.01) during walking. No other muscles exhibited a sex difference in M-EMG% during either activity.
Conclusion: The female subjects in this study showed higher medial hamstring preactivation. However, this may be because they were not injured, indicating their propensity for joint stabilisation. A long term prospective study is required to eliminate this potential explanation. No sex difference in gastrocnemius preactivation was seen, adding to the controversy about whether this muscle contributes to feed forward joint stability. Further research of preactivation of the musculature of the leg is required.
Full Text
The Full Text of this article is available as a PDF (151.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arendt E. A., Agel J., Dick R. Anterior cruciate ligament injury patterns among collegiate men and women. J Athl Train. 1999 Apr;34(2):86–92. [PMC free article] [PubMed] [Google Scholar]
- Arendt E., Dick R. Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med. 1995 Nov-Dec;23(6):694–701. doi: 10.1177/036354659502300611. [DOI] [PubMed] [Google Scholar]
- Aune A. K., Ekeland A., Nordsletten L. Effect of quadriceps or hamstring contraction on the anterior shear force to anterior cruciate ligament failure. An in vivo study in the rat. Acta Orthop Scand. 1995 Jun;66(3):261–265. doi: 10.3109/17453679508995538. [DOI] [PubMed] [Google Scholar]
- Baratta R., Solomonow M., Zhou B. H., Letson D., Chuinard R., D'Ambrosia R. Muscular coactivation. The role of the antagonist musculature in maintaining knee stability. Am J Sports Med. 1988 Mar-Apr;16(2):113–122. doi: 10.1177/036354658801600205. [DOI] [PubMed] [Google Scholar]
- Barrett G. R., Rose J. M., Ried E. M. Relationship of anterior cruciate ligament injury to notch width index (a roentgenographic study). J Miss State Med Assoc. 1992 Aug;33(8):279–283. [PubMed] [Google Scholar]
- Beard D. J., Kyberd P. J., O'Connor J. J., Fergusson C. M., Dodd C. A. Reflex hamstring contraction latency in anterior cruciate ligament deficiency. J Orthop Res. 1994 Mar;12(2):219–228. doi: 10.1002/jor.1100120211. [DOI] [PubMed] [Google Scholar]
- Bergenheim M., Johansson H., Pedersen J. The role of the gamma-system for improving information transmission in populations of Ia afferents. Neurosci Res. 1995 Sep;23(2):207–215. doi: 10.1016/0168-0102(95)00941-l. [DOI] [PubMed] [Google Scholar]
- Collins J. J., O'Connor J. J. Muscle-ligament interactions at the knee during walking. Proc Inst Mech Eng H. 1991;205(1):11–18. doi: 10.1243/PIME_PROC_1991_205_256_02. [DOI] [PubMed] [Google Scholar]
- Daniels J., Daniels N. Running economy of elite male and elite female runners. Med Sci Sports Exerc. 1992 Apr;24(4):483–489. [PubMed] [Google Scholar]
- Demont R. G., Lephart S. M., Giraldo J. L., Swanik C. B., Fu F. H. Muscle preactivity of anterior cruciate ligament-deficient and -reconstructed females during functional activities. J Athl Train. 1999 Apr;34(2):115–120. [PMC free article] [PubMed] [Google Scholar]
- Dietz V., Noth J., Schmidtbleicher D. Interaction between pre-activity and stretch reflex in human triceps brachii during landing from forward falls. J Physiol. 1981 Feb;311:113–125. doi: 10.1113/jphysiol.1981.sp013576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Escamilla R. F., Fleisig G. S., Zheng N., Barrentine S. W., Wilk K. E., Andrews J. R. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med Sci Sports Exerc. 1998 Apr;30(4):556–569. doi: 10.1097/00005768-199804000-00014. [DOI] [PubMed] [Google Scholar]
- Fleming B. C., Renstrom P. A., Ohlen G., Johnson R. J., Peura G. D., Beynnon B. D., Badger G. J. The gastrocnemius muscle is an antagonist of the anterior cruciate ligament. J Orthop Res. 2001 Nov;19(6):1178–1184. doi: 10.1016/S0736-0266(01)00057-2. [DOI] [PubMed] [Google Scholar]
- Goldfuss A. J., Morehouse C. A., LeVeau B. F. Effect of muscular tension on knee stability. Med Sci Sports. 1973 Winter;5(4):267–271. [PubMed] [Google Scholar]
- Grillner S. The role of muscle stiffness in meeting the changing postural and locomotor requirements for force development by the ankle extensors. Acta Physiol Scand. 1972 Sep;86(1):92–108. doi: 10.1111/j.1748-1716.1972.tb00227.x. [DOI] [PubMed] [Google Scholar]
- Hewett T. E., Lindenfeld T. N., Riccobene J. V., Noyes F. R. The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med. 1999 Nov-Dec;27(6):699–706. doi: 10.1177/03635465990270060301. [DOI] [PubMed] [Google Scholar]
- Hewett T. E. Neuromuscular and hormonal factors associated with knee injuries in female athletes. Strategies for intervention. Sports Med. 2000 May;29(5):313–327. doi: 10.2165/00007256-200029050-00003. [DOI] [PubMed] [Google Scholar]
- Huston L. J., Wojtys E. M. Neuromuscular performance characteristics in elite female athletes. Am J Sports Med. 1996 Jul-Aug;24(4):427–436. doi: 10.1177/036354659602400405. [DOI] [PubMed] [Google Scholar]
- Johansson H., Sjölander P., Sojka P. A sensory role for the cruciate ligaments. Clin Orthop Relat Res. 1991 Jul;(268):161–178. [PubMed] [Google Scholar]
- Johansson H., Sjölander P., Sojka P. Fusimotor reflex profiles of individual triceps surae primary muscle spindle afferents assessed with multi-afferent recording technique. J Physiol (Paris) 1991;85(1):6–19. [PubMed] [Google Scholar]
- Johansson H., Sojka P. Pathophysiological mechanisms involved in genesis and spread of muscular tension in occupational muscle pain and in chronic musculoskeletal pain syndromes: a hypothesis. Med Hypotheses. 1991 Jul;35(3):196–203. doi: 10.1016/0306-9877(91)90233-o. [DOI] [PubMed] [Google Scholar]
- Kuster M. S., Wood G. A., Stachowiak G. W., Gächter A. Joint load considerations in total knee replacement. J Bone Joint Surg Br. 1997 Jan;79(1):109–113. doi: 10.1302/0301-620x.79b1.6978. [DOI] [PubMed] [Google Scholar]
- Kuster M., Wood G. A., Sakurai S., Blatter G. 1994 Nicola Cerulli Young Researchers Award. Downhill walking: a stressful task for the anterior cruciate ligament? A biomechanical study with clinical implications. Knee Surg Sports Traumatol Arthrosc. 1994;2(1):2–7. doi: 10.1007/BF01552646. [DOI] [PubMed] [Google Scholar]
- Kyröläinen H., Komi P. V. Differences in mechanical efficiency between power- and endurance-trained athletes while jumping. Eur J Appl Physiol Occup Physiol. 1995;70(1):36–44. doi: 10.1007/BF00601806. [DOI] [PubMed] [Google Scholar]
- Lacquaniti F., Maioli C. Anticipatory and reflex coactivation of antagonist muscles in catching. Brain Res. 1987 Mar 17;406(1-2):373–378. doi: 10.1016/0006-8993(87)90810-9. [DOI] [PubMed] [Google Scholar]
- Lacquaniti F., Maioli C. The role of preparation in tuning anticipatory and reflex responses during catching. J Neurosci. 1989 Jan;9(1):134–148. doi: 10.1523/JNEUROSCI.09-01-00134.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lass P., Kaalund S., leFevre S., Arendt-Nielsen L., Sinkjaer T., Simonsen O. Muscle coordination following rupture of the anterior cruciate ligament. Electromyographic studies of 14 patients. Acta Orthop Scand. 1991 Feb;62(1):9–14. doi: 10.3109/17453679108993083. [DOI] [PubMed] [Google Scholar]
- Lutz G. E., Palmitier R. A., An K. N., Chao E. Y. Comparison of tibiofemoral joint forces during open-kinetic-chain and closed-kinetic-chain exercises. J Bone Joint Surg Am. 1993 May;75(5):732–739. doi: 10.2106/00004623-199305000-00014. [DOI] [PubMed] [Google Scholar]
- Markolf K. L., Burchfield D. M., Shapiro M. M., Shepard M. F., Finerman G. A., Slauterbeck J. L. Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res. 1995 Nov;13(6):930–935. doi: 10.1002/jor.1100130618. [DOI] [PubMed] [Google Scholar]
- Mero A., Komi P. V. Electromyographic activity in sprinting at speeds ranging from sub-maximal to supra-maximal. Med Sci Sports Exerc. 1987 Jun;19(3):266–274. [PubMed] [Google Scholar]
- Nyland J. A., Caborn D. N., Shapiro R., Johnson D. L. Crossover cutting during hamstring fatigue produces transverse plane knee control deficits. J Athl Train. 1999 Apr;34(2):137–143. [PMC free article] [PubMed] [Google Scholar]
- Renström P., Arms S. W., Stanwyck T. S., Johnson R. J., Pope M. H. Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am J Sports Med. 1986 Jan-Feb;14(1):83–87. doi: 10.1177/036354658601400114. [DOI] [PubMed] [Google Scholar]
- Rozzi S. L., Lephart S. M., Fu F. H. Effects of muscular fatigue on knee joint laxity and neuromuscular characteristics of male and female athletes. J Athl Train. 1999 Apr;34(2):106–114. [PMC free article] [PubMed] [Google Scholar]
- Rozzi S. L., Lephart S. M., Gear W. S., Fu F. H. Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. Am J Sports Med. 1999 May-Jun;27(3):312–319. doi: 10.1177/03635465990270030801. [DOI] [PubMed] [Google Scholar]
- Santello M., McDonagh M. J. The control of timing and amplitude of EMG activity in landing movements in humans. Exp Physiol. 1998 Nov;83(6):857–874. doi: 10.1113/expphysiol.1998.sp004165. [DOI] [PubMed] [Google Scholar]
- Shelburne K. B., Pandy M. G. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions. J Biomech. 1997 Feb;30(2):163–176. doi: 10.1016/s0021-9290(96)00119-4. [DOI] [PubMed] [Google Scholar]
- Wojtys E. M., Huston L. J. Neuromuscular performance in normal and anterior cruciate ligament-deficient lower extremities. Am J Sports Med. 1994 Jan-Feb;22(1):89–104. doi: 10.1177/036354659402200116. [DOI] [PubMed] [Google Scholar]
- Wolf S. L., Ammerman J., Jann B. Organization of responses in human lateral gastrocnemius muscle to specified body perturbations. J Electromyogr Kinesiol. 1998 Feb;8(1):11–21. doi: 10.1016/s1050-6411(97)00001-1. [DOI] [PubMed] [Google Scholar]