Abstract
Objectives: The respiratory compensation point (RCP) marks the onset of hyperventilation ("respiratory compensation") during incremental exercise. Its physiological meaning has not yet been definitely determined, but the most common explanation is a failure of the body's buffering mechanisms which leads to metabolic (lactic) acidosis. It was intended to test this experimentally.
Methods: During a first ramp-like exercise test on a cycle ergometer, RCP (range: 2.51–3.73 l*min–1 oxygen uptake) was determined from gas exchange measurements in five healthy subjects (age 26–42; body mass index (BMI) 20.7–23.9 kg*m–2; VO2peak 51.3–62.1 ml*min–1*kg–1). On the basis of simultaneous determinations of blood pH and base excess, the necessary amount of bicarbonate to completely buffer the metabolic acidosis was calculated. This quantity was administered intravenously in small doses during a second, otherwise identical, exercise test.
Results: In each subject sufficient compensation for the acidosis, that is, a pH value constantly above 7.37, was attained during the second test. A delay but no disappearance of the hyperventilation was present in all participants when compared with the first test. RCP occurred on average at a significantly (p = 0.043) higher oxygen uptake (+0.15 l*min–1) compared with the first test.
Conclusions: For the first time it was directly demonstrated that exercise induced lactic acidosis is causally involved in the hyperventilation which starts at RCP. However, it does not represent the only additional stimulus of ventilation during intense exercise. Muscle afferents and other sensory inputs from exercising muscles are alternative triggering mechanisms.
Full Text
The Full Text of this article is available as a PDF (101.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmaidi S., Hardy J. M., Varray A., Collomp K., Mercier J., Préfaut C. Respiratory gas exchange indices used to detect the blood lactate accumulation threshold during an incremental exercise test in young athletes. Eur J Appl Physiol Occup Physiol. 1993;66(1):31–36. doi: 10.1007/BF00863396. [DOI] [PubMed] [Google Scholar]
- Anderson G. S., Rhodes E. C. A review of blood lactate and ventilatory methods of detecting transition thresholds. Sports Med. 1989 Jul;8(1):43–55. doi: 10.2165/00007256-198908010-00005. [DOI] [PubMed] [Google Scholar]
- Barbeau P., Serresse O., Boulay M. R. Using maximal and submaximal aerobic variables to monitor elite cyclists during a season. Med Sci Sports Exerc. 1993 Sep;25(9):1062–1069. [PubMed] [Google Scholar]
- Beaver W. L., Wasserman K., Whipp B. J. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol (1985) 1986 Jun;60(6):2020–2027. doi: 10.1152/jappl.1986.60.6.2020. [DOI] [PubMed] [Google Scholar]
- Buchfuhrer M. J., Hansen J. E., Robinson T. E., Sue D. Y., Wasserman K., Whipp B. J. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol Respir Environ Exerc Physiol. 1983 Nov;55(5):1558–1564. doi: 10.1152/jappl.1983.55.5.1558. [DOI] [PubMed] [Google Scholar]
- Bunc V., Hofmann P., Leitner H., Gaisl G. Verification of the heart rate threshold. Eur J Appl Physiol Occup Physiol. 1995;70(3):263–269. doi: 10.1007/BF00238574. [DOI] [PubMed] [Google Scholar]
- Busse M. W., Scholz J., Maassen N. Plasma potassium and ventilation during incremental exercise in humans: modulation by sodium bicarbonate and substrate availability. Eur J Appl Physiol Occup Physiol. 1992;65(4):340–346. doi: 10.1007/BF00868138. [DOI] [PubMed] [Google Scholar]
- Denis C., Fouquet R., Poty P., Geyssant A., Lacour J. R. Effect of 40 weeks of endurance training on the anaerobic threshold. Int J Sports Med. 1982 Nov;3(4):208–214. doi: 10.1055/s-2008-1026089. [DOI] [PubMed] [Google Scholar]
- Dickhuth H. H., Yin L., Niess A., Röcker K., Mayer F., Heitkamp H. C., Horstmann T. Ventilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: relationship and reproducibility. Int J Sports Med. 1999 Feb;20(2):122–127. doi: 10.1055/s-2007-971105. [DOI] [PubMed] [Google Scholar]
- Hagberg J. M., Coyle E. F., Carroll J. E., Miller J. M., Martin W. H., Brooke M. H. Exercise hyperventilation in patients with McArdle's disease. J Appl Physiol Respir Environ Exerc Physiol. 1982 Apr;52(4):991–994. doi: 10.1152/jappl.1982.52.4.991. [DOI] [PubMed] [Google Scholar]
- Kindermann W., Simon G., Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. Eur J Appl Physiol Occup Physiol. 1979 Sep;42(1):25–34. doi: 10.1007/BF00421101. [DOI] [PubMed] [Google Scholar]
- Loat C. E., Rhodes E. C. Relationship between the lactate and ventilatory thresholds during prolonged exercise. Sports Med. 1993 Feb;15(2):104–115. doi: 10.2165/00007256-199315020-00004. [DOI] [PubMed] [Google Scholar]
- Luciá A., Hoyos J., Carvajal A., Chicharro J. L. Heart rate response to professional road cycling: the Tour de France. Int J Sports Med. 1999 Apr;20(3):167–172. doi: 10.1055/s-1999-970284. [DOI] [PubMed] [Google Scholar]
- McCloskey D. I., Mitchell J. H. Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol. 1972 Jul;224(1):173–186. doi: 10.1113/jphysiol.1972.sp009887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer K., Hajric R., Westbrook S., Samek L., Lehmann M., Schwaibold M., Betz P., Roskamm H. Ventilatory and lactate threshold determinations in healthy normals and cardiac patients: methodological problems. Eur J Appl Physiol Occup Physiol. 1996;72(5-6):387–393. doi: 10.1007/BF00242266. [DOI] [PubMed] [Google Scholar]
- Oshima Y., Miyamoto T., Tanaka S., Wadazumi T., Kurihara N., Fujimoto S. Relationship between isocapnic buffering and maximal aerobic capacity in athletes. Eur J Appl Physiol Occup Physiol. 1997;76(5):409–414. doi: 10.1007/s004210050269. [DOI] [PubMed] [Google Scholar]
- Reinhard U., Müller P. H., Schmülling R. M. Determination of anaerobic threshold by the ventilation equivalent in normal individuals. Respiration. 1979;38(1):36–42. doi: 10.1159/000194056. [DOI] [PubMed] [Google Scholar]
- Schneider D. A., Berwick J. P. VE and VCO2 remain tightly coupled during incremental cycling performed after a bout of high-intensity exercise. Eur J Appl Physiol Occup Physiol. 1998;77(1-2):72–76. doi: 10.1007/s004210050302. [DOI] [PubMed] [Google Scholar]
- Simon J., Young J. L., Gutin B., Blood D. K., Case R. B. Lactate accumulation relative to the anaerobic and respiratory compensation thresholds. J Appl Physiol Respir Environ Exerc Physiol. 1983 Jan;54(1):13–17. doi: 10.1152/jappl.1983.54.1.13. [DOI] [PubMed] [Google Scholar]
- Smith S. A., Gallagher K. M., Norton K. H., Querry R. G., Welch-O'Connor R. M., Raven P. B. Ventilatory responses to dynamic exercise elicited by intramuscular sensors. Med Sci Sports Exerc. 1999 Feb;31(2):277–286. doi: 10.1097/00005768-199902000-00012. [DOI] [PubMed] [Google Scholar]
- Stegmann H., Kindermann W., Schnabel A. Lactate kinetics and individual anaerobic threshold. Int J Sports Med. 1981 Aug;2(3):160–165. doi: 10.1055/s-2008-1034604. [DOI] [PubMed] [Google Scholar]
- Wasserman K., Whipp B. J., Koyl S. N., Beaver W. L. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973 Aug;35(2):236–243. doi: 10.1152/jappl.1973.35.2.236. [DOI] [PubMed] [Google Scholar]
- Whipp B. J. Exercise hyperventilation in patients with McArdle's disease. J Appl Physiol Respir Environ Exerc Physiol. 1983 Nov;55(5):1638–1639. doi: 10.1152/jappl.1983.55.5.1638. [DOI] [PubMed] [Google Scholar]
