Skip to main content
British Journal of Sports Medicine logoLink to British Journal of Sports Medicine
. 2004 Oct;38(5):553–560. doi: 10.1136/bjsm.2003.004721

On issues of confidence in determining the time constant for oxygen uptake kinetics

G Markovitz 1, J Sayre 1, T Storer 1, C Cooper 1, D Gordon 1
PMCID: PMC1724920  PMID: 15388538

Abstract

Background: τV·O2 at the onset of constant work rate (CWR) exercise is a variable of aerobic fitness that shortens with physical training and lengthens with cardiopulmonary disease. Determination of τV·O2 with sufficiently high confidence has typically required multiple exercise transitions limiting its clinical application.

Objectives: To design a protocol to determine τV·O2 reliably but simply.

Methods: On each of three days, five healthy men performed two CWR tests on a cycle ergometer below the metabolic threshold (V·O2θ) for blood lactate accumulation as determined by gas exchange measurements followed by an incremental work rate (IWR) test. τV·O2 was determined (a) from the on-transit (on-τV·O2) and off-transit (off-τV·O2) of six CWR tests both individually and superimposed, using non-linear regression with a monoexponential model, and (b) by geometric analysis of the IWR tests (ramp-τV·O2).

Results: Group means (SD) were: V·O2MAX 3.84 (0.44) litres/min, V·O2θ 1.88 (0.23) litres/min, steady state exercise V·O2 1.67 (0.07) litres/min, on-τV·O2 38.0 (5.3) seconds, off-τV·O2 39.0 (4.3) seconds, and ramp-τV·O2 60.8 (15.4) seconds. On-τV·O2 correlated with off-τV·O2 (r = 0.87), V·O2MAX (r = –0.73), and V·O2θ (r = 0.89). The pooled mean τV·O2 from six superimposed tests agreed with the arithmetic grand mean of the six tests.

Conclusions: The average of on-τV·O2 and off-τV·O2 fell within the 95% confidence interval of the pooled mean by the second test. Ramp-τV·O2 was longer and less reproducible. These findings support the use of both on- and off-transit data for the determination of τV·O2, an approach that reduces the number of transitions necessary for accurate determination of τV·O2, potentially enhancing its clinical application.

Full Text

The Full Text of this article is available as a PDF (192.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson G., Nevill A. M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998 Oct;26(4):217–238. doi: 10.2165/00007256-199826040-00002. [DOI] [PubMed] [Google Scholar]
  2. Barstow T. J., Casaburi R., Wasserman K. O2 uptake kinetics and the O2 deficit as related to exercise intensity and blood lactate. J Appl Physiol (1985) 1993 Aug;75(2):755–762. doi: 10.1152/jappl.1993.75.2.755. [DOI] [PubMed] [Google Scholar]
  3. Beaver W. L., Wasserman K., Whipp B. J. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol (1985) 1986 Jun;60(6):2020–2027. doi: 10.1152/jappl.1986.60.6.2020. [DOI] [PubMed] [Google Scholar]
  4. Buchfuhrer M. J., Hansen J. E., Robinson T. E., Sue D. Y., Wasserman K., Whipp B. J. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol Respir Environ Exerc Physiol. 1983 Nov;55(5):1558–1564. doi: 10.1152/jappl.1983.55.5.1558. [DOI] [PubMed] [Google Scholar]
  5. Camus G., Atchou G., Bruckner J. C., Giezendanner D., di Prampero P. E. Slow upward drift of VO2 during constant-load cycling in untrained subjects. Eur J Appl Physiol Occup Physiol. 1988;58(1-2):197–202. doi: 10.1007/BF00636626. [DOI] [PubMed] [Google Scholar]
  6. Casaburi R., Barstow T. J., Robinson T., Wasserman K. Influence of work rate on ventilatory and gas exchange kinetics. J Appl Physiol (1985) 1989 Aug;67(2):547–555. doi: 10.1152/jappl.1989.67.2.547. [DOI] [PubMed] [Google Scholar]
  7. Casaburi R., Porszasz J., Burns M. R., Carithers E. R., Chang R. S., Cooper C. B. Physiologic benefits of exercise training in rehabilitation of patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997 May;155(5):1541–1551. doi: 10.1164/ajrccm.155.5.9154855. [DOI] [PubMed] [Google Scholar]
  8. Chilibeck P. D., Paterson D. H., Petrella R. J., Cunningham D. A. The influence of age and cardiorespiratory fitness on kinetics of oxygen uptake. Can J Appl Physiol. 1996 Jun;21(3):185–196. doi: 10.1139/h96-015. [DOI] [PubMed] [Google Scholar]
  9. Davis J. A., Whipp B. J., Lamarra N., Huntsman D. J., Frank M. H., Wasserman K. Effect of ramp slope on determination of aerobic parameters from the ramp exercise test. Med Sci Sports Exerc. 1982;14(5):339–343. [PubMed] [Google Scholar]
  10. Gerbino A., Ward S. A., Whipp B. J. Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. J Appl Physiol (1985) 1996 Jan;80(1):99–107. doi: 10.1152/jappl.1996.80.1.99. [DOI] [PubMed] [Google Scholar]
  11. Griffiths T. L., Henson L. C., Whipp B. J. Influence of inspired oxygen concentration on the dynamics of the exercise hyperpnoea in man. J Physiol. 1986 Nov;380:387–403. doi: 10.1113/jphysiol.1986.sp016292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hughson R. L., Inman M. D. Oxygen uptake kinetics from ramp work tests: variability of single test values. J Appl Physiol (1985) 1986 Jul;61(1):373–376. doi: 10.1152/jappl.1986.61.1.373. [DOI] [PubMed] [Google Scholar]
  13. Jones N. L., Makrides L., Hitchcock C., Chypchar T., McCartney N. Normal standards for an incremental progressive cycle ergometer test. Am Rev Respir Dis. 1985 May;131(5):700–708. doi: 10.1164/arrd.1985.131.5.700. [DOI] [PubMed] [Google Scholar]
  14. Karlsson H., Lindborg B., Linnarsson D. Time courses of pulmonary gas exchange and heart rate changes in supine exercise. Acta Physiol Scand. 1975 Nov;95(3):329–340. doi: 10.1111/j.1748-1716.1975.tb10057.x. [DOI] [PubMed] [Google Scholar]
  15. Knox A. J., Morrison J. F., Muers M. F. Reproducibility of walking test results in chronic obstructive airways disease. Thorax. 1988 May;43(5):388–392. doi: 10.1136/thx.43.5.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Koike A., Hiroe M., Adachi H., Yajima T., Yamauchi Y., Nogami A., Ito H., Miyahara Y., Korenaga M., Marumo F. Oxygen uptake kinetics are determined by cardiac function at onset of exercise rather than peak exercise in patients with prior myocardial infarction. Circulation. 1994 Nov;90(5):2324–2332. doi: 10.1161/01.cir.90.5.2324. [DOI] [PubMed] [Google Scholar]
  17. Lamarra N., Whipp B. J., Ward S. A., Wasserman K. Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J Appl Physiol (1985) 1987 May;62(5):2003–2012. doi: 10.1152/jappl.1987.62.5.2003. [DOI] [PubMed] [Google Scholar]
  18. Nery L. E., Wasserman K., Andrews J. D., Huntsman D. J., Hansen J. E., Whipp B. J. Ventilatory and gas exchange kinetics during exercise in chronic airways obstruction. J Appl Physiol Respir Environ Exerc Physiol. 1982 Dec;53(6):1594–1602. doi: 10.1152/jappl.1982.53.6.1594. [DOI] [PubMed] [Google Scholar]
  19. Ozyener F., Rossiter H. B., Ward S. A., Whipp B. J. Influence of exercise intensity on the on- and off-transient kinetics of pulmonary oxygen uptake in humans. J Physiol. 2001 Jun 15;533(Pt 3):891–902. doi: 10.1111/j.1469-7793.2001.t01-1-00891.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Paterson D. H., Whipp B. J. Asymmetries of oxygen uptake transients at the on- and offset of heavy exercise in humans. J Physiol. 1991 Nov;443:575–586. doi: 10.1113/jphysiol.1991.sp018852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Phillips S. M., Green H. J., MacDonald M. J., Hughson R. L. Progressive effect of endurance training on VO2 kinetics at the onset of submaximal exercise. J Appl Physiol (1985) 1995 Dec;79(6):1914–1920. doi: 10.1152/jappl.1995.79.6.1914. [DOI] [PubMed] [Google Scholar]
  22. Powers S. K., Dodd S., Beadle R. E. Oxygen uptake kinetics in trained athletes differing in VO2max. Eur J Appl Physiol Occup Physiol. 1985;54(3):306–308. doi: 10.1007/BF00426150. [DOI] [PubMed] [Google Scholar]
  23. Roston W. L., Whipp B. J., Davis J. A., Cunningham D. A., Effros R. M., Wasserman K. Oxygen uptake kinetics and lactate concentration during exercise in humans. Am Rev Respir Dis. 1987 May;135(5):1080–1084. doi: 10.1164/arrd.1987.135.5.1080. [DOI] [PubMed] [Google Scholar]
  24. Shephard R. J., Allen C., Benade A. J., Davies C. T., Di Prampero P. E., Hedman R., Merriman J. E., Myhre K., Simmons R. The maximum oxygen intake. An international reference standard of cardiorespiratory fitness. Bull World Health Organ. 1968;38(5):757–764. [PMC free article] [PubMed] [Google Scholar]
  25. Sietsema K. E., Cooper D. M., Perloff J. K., Rosove M. H., Child J. S., Canobbio M. M., Whipp B. J., Wasserman K. Dynamics of oxygen uptake during exercise in adults with cyanotic congenital heart disease. Circulation. 1986 Jun;73(6):1137–1144. doi: 10.1161/01.cir.73.6.1137. [DOI] [PubMed] [Google Scholar]
  26. Sietsema K. E., Daly J. A., Wasserman K. Early dynamics of O2 uptake and heart rate as affected by exercise work rate. J Appl Physiol (1985) 1989 Dec;67(6):2535–2541. doi: 10.1152/jappl.1989.67.6.2535. [DOI] [PubMed] [Google Scholar]
  27. Sue D. Y., Wasserman K., Moricca R. B., Casaburi R. Metabolic acidosis during exercise in patients with chronic obstructive pulmonary disease. Use of the V-slope method for anaerobic threshold determination. Chest. 1988 Nov;94(5):931–938. doi: 10.1378/chest.94.5.931. [DOI] [PubMed] [Google Scholar]
  28. Wasserman K. Breathing during exercise. N Engl J Med. 1978 Apr 6;298(14):780–785. doi: 10.1056/NEJM197804062981408. [DOI] [PubMed] [Google Scholar]
  29. Wasserman K. Coupling of external to internal respiration. Am Rev Respir Dis. 1984 Feb;129(2 Pt 2):S21–S24. doi: 10.1164/arrd.1984.129.2P2.S21. [DOI] [PubMed] [Google Scholar]
  30. Wasserman K., Whipp B. J. Excercise physiology in health and disease. Am Rev Respir Dis. 1975 Aug;112(2):219–249. doi: 10.1164/arrd.1975.112.2.219. [DOI] [PubMed] [Google Scholar]
  31. Whipp B. J., Davis J. A., Torres F., Wasserman K. A test to determine parameters of aerobic function during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1981 Jan;50(1):217–221. doi: 10.1152/jappl.1981.50.1.217. [DOI] [PubMed] [Google Scholar]
  32. Whipp B. J., Ward S. A., Lamarra N., Davis J. A., Wasserman K. Parameters of ventilatory and gas exchange dynamics during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jun;52(6):1506–1513. doi: 10.1152/jappl.1982.52.6.1506. [DOI] [PubMed] [Google Scholar]
  33. Whipp B. J., Wasserman K. Efficiency of muscular work. J Appl Physiol. 1969 May;26(5):644–648. doi: 10.1152/jappl.1969.26.5.644. [DOI] [PubMed] [Google Scholar]
  34. Whipp B. J., Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol. 1972 Sep;33(3):351–356. doi: 10.1152/jappl.1972.33.3.351. [DOI] [PubMed] [Google Scholar]
  35. Yoshida T., Whipp B. J. Dynamic asymmetries of cardiac output transients in response to muscular exercise in man. J Physiol. 1994 Oct 15;480(Pt 2):355–359. doi: 10.1113/jphysiol.1994.sp020365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhang Y. Y., Wasserman K., Sietsema K. E., Ben-Dov I., Barstow T. J., Mizumoto G., Sullivan C. S. O2 uptake kinetics in response to exercise. A measure of tissue anaerobiosis in heart failure. Chest. 1993 Mar;103(3):735–741. doi: 10.1378/chest.103.3.735. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Sports Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES