Skip to main content
British Journal of Sports Medicine logoLink to British Journal of Sports Medicine
. 2005 Nov;39(11):830–834. doi: 10.1136/bjsm.2004.017566

Release of α-actin into serum after skeletal muscle damage

A Martinez-Amat 1, H Boulaiz 1, J Prados 1, J Marchal 1, P Padial 1, O Caba 1, F Rodriguez-Serrano 1, A Aranega 1
PMCID: PMC1725075  PMID: 16244192

Abstract

Objective: The skeletal muscle protein α-actin was investigated in the serum of subjects with severe skeletal muscle damage to assess its utility as a reliable and predictive marker of muscle damage.

Methods: Serum samples were obtained from 33 healthy controls and 33 patients with severe skeletal muscle damage, defined by a total creatine kinase value of >500 IU/l (Rosalki method). Troponin I, troponin T, and myoglobin concentrations were determined by immunoassay and α-actin concentrations by Western blot and densitometry.

Results: The mean serum concentration of α-actin in controls and patients with skeletal muscle damage was 600.9 and 1968.51 ng/ml, respectively, a statistically significant difference. Sera of patients with muscle damage showed higher levels of α-actin than of troponin or myoglobin. No significant difference in troponin I levels was observed between the groups.

Conclusions: According to these results, α-actin was the most significant skeletal muscle damage marker analysed and may be an ideal candidate for the identification of all types of myofibre injury, including sports injuries. Our findings support the use of α-actin as a marker alongside other currently used biological proteins.

Full Text

The Full Text of this article is available as a PDF (92.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. E., 3rd, Abendschein D. R., Jaffe A. S. Biochemical markers of myocardial injury. Is MB creatine kinase the choice for the 1990s? Circulation. 1993 Aug;88(2):750–763. doi: 10.1161/01.cir.88.2.750. [DOI] [PubMed] [Google Scholar]
  2. Aránega A. E., Reina A., Muros M. A., Alvarez L., Prados J., Aránega A. Circulating alpha-actin protein in acute myocardial infarction. Int J Cardiol. 1993 Jan;38(1):49–55. doi: 10.1016/0167-5273(93)90203-s. [DOI] [PubMed] [Google Scholar]
  3. Aránega A. E., Reina A., Velez C., Alvarez L., Melguizo C., Aránega A. Circulating alpha-actin in angina pectoris. J Mol Cell Cardiol. 1993 Jan;25(1):15–22. doi: 10.1006/jmcc.1993.1003. [DOI] [PubMed] [Google Scholar]
  4. Aránega A. E., Velez C., Prados J., Melguizo C., Marchal J. A., Arena N., Alvarez L., Aránega A. Modulation of alpha-actin and alpha-actinin proteins in cardiomyocytes by retinoic acid during development. Cells Tissues Organs. 1999;164(2):82–89. doi: 10.1159/000016645. [DOI] [PubMed] [Google Scholar]
  5. Asp S., Daugaard J. R., Kristiansen S., Kiens B., Richter E. A. Eccentric exercise decreases maximal insulin action in humans: muscle and systemic effects. J Physiol. 1996 Aug 1;494(Pt 3):891–898. doi: 10.1113/jphysiol.1996.sp021541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carroll Chad C., Carrithers John A., Trappe Todd A. Contractile protein concentrations in human single muscle fibers. J Muscle Res Cell Motil. 2004;25(1):55–59. doi: 10.1023/b:jure.0000021362.55389.6b. [DOI] [PubMed] [Google Scholar]
  7. Clarkson P. M., Byrnes W. C., McCormick K. M., Turcotte L. P., White J. S. Muscle soreness and serum creatine kinase activity following isometric, eccentric, and concentric exercise. Int J Sports Med. 1986 Jun;7(3):152–155. doi: 10.1055/s-2008-1025753. [DOI] [PubMed] [Google Scholar]
  8. Féasson L., Stockholm D., Freyssenet D., Richard I., Duguez S., Beckmann J. S., Denis C. Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. J Physiol. 2002 Aug 15;543(Pt 1):297–306. doi: 10.1113/jphysiol.2002.018689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gleeson M., Walsh N. P., Blannin A. K., Robson P. J., Cook L., Donnelly A. E., Day S. H. The effect of severe eccentric exercise-induced muscle damage on plasma elastase, glutamine and zinc concentrations. Eur J Appl Physiol Occup Physiol. 1998 May;77(6):543–546. doi: 10.1007/s004210050373. [DOI] [PubMed] [Google Scholar]
  10. Gomes Aldrin V., Potter James D., Szczesna-Cordary Danuta. The role of troponins in muscle contraction. IUBMB Life. 2002 Dec;54(6):323–333. doi: 10.1080/15216540216037. [DOI] [PubMed] [Google Scholar]
  11. Goodson Holly V., Hawse William F. Molecular evolution of the actin family. J Cell Sci. 2002 Jul 1;115(Pt 13):2619–2622. doi: 10.1242/jcs.115.13.2619. [DOI] [PubMed] [Google Scholar]
  12. Grazi Enrico, Cintio Orietta, Trombetta Giorgio. On the mechanics of the actin filament: the linear relationship between stiffness and yield strength allows estimation of the yield strength of thin filament in vivo. J Muscle Res Cell Motil. 2004;25(1):103–105. doi: 10.1023/b:jure.0000021348.10678.f9. [DOI] [PubMed] [Google Scholar]
  13. Katus H. A., Looser S., Hallermayer K., Remppis A., Scheffold T., Borgya A., Essig U., Geuss U. Development and in vitro characterization of a new immunoassay of cardiac troponin T. Clin Chem. 1992 Mar;38(3):386–393. [PubMed] [Google Scholar]
  14. Kayashima S., Ohno H., Fujioka T., Taniguchi N., Nagata N. Leucocytosis as a marker of organ damage induced by chronic strenuous physical exercise. Eur J Appl Physiol Occup Physiol. 1995;70(5):413–420. doi: 10.1007/BF00618492. [DOI] [PubMed] [Google Scholar]
  15. Kenttä G., Hassmén P. Overtraining and recovery. A conceptual model. Sports Med. 1998 Jul;26(1):1–16. doi: 10.2165/00007256-199826010-00001. [DOI] [PubMed] [Google Scholar]
  16. Komulainen J., Takala T. E., Vihko V. Does increased serum creatine kinase activity reflect exercise-induced muscle damage in rats? Int J Sports Med. 1995 Apr;16(3):150–154. doi: 10.1055/s-2007-972983. [DOI] [PubMed] [Google Scholar]
  17. Kopp Jürgen, Loos Bernd, Spilker Gerald, Horch Raymund E. Correlation between serum creatinine kinase levels and extent of muscle damage in electrical burns. Burns. 2004 Nov;30(7):680–683. doi: 10.1016/j.burns.2004.05.008. [DOI] [PubMed] [Google Scholar]
  18. Korn E. D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982 Apr;62(2):672–737. doi: 10.1152/physrev.1982.62.2.672. [DOI] [PubMed] [Google Scholar]
  19. Kosior Dariusz, Chwyczko Tomasz, Stawicki Sławomir, Tadeusiak Wiesław, Rabczenko Daniel, Opolski Grzegorz. Mioglobina i troponina I jako markery uszkodzenia mieśnia sercowego podczas kardiowersji migotania przedsionków. Pol Arch Med Wewn. 2003 Aug;110(2):827–836. [PubMed] [Google Scholar]
  20. Kuipers H., Keizer H. A. Overtraining in elite athletes. Review and directions for the future. Sports Med. 1988 Aug;6(2):79–92. doi: 10.2165/00007256-198806020-00003. [DOI] [PubMed] [Google Scholar]
  21. Machesky L. M., May R. C. Arps: actin-related proteins. Results Probl Cell Differ. 2001;32:213–229. doi: 10.1007/978-3-540-46560-7_15. [DOI] [PubMed] [Google Scholar]
  22. Nageh Thuraia, Sherwood Roy A., Harris Beverly M., Byrne Jonathan A., Thomas Martyn R. Cardiac troponin T and I and creatine kinase-MB as markers of myocardial injury and predictors of outcome following percutaneous coronary intervention. Int J Cardiol. 2003 Dec;92(2-3):285–293. doi: 10.1016/s0167-5273(03)00105-0. [DOI] [PubMed] [Google Scholar]
  23. Nesher Nahum, Zisman Eli, Wolf Tamir, Sharony Ram, Bolotin Gil, David Miriam, Uretzky Gideon, Pizov Reuven. Strict thermoregulation attenuates myocardial injury during coronary artery bypass graft surgery as reflected by reduced levels of cardiac-specific troponin I. Anesth Analg. 2003 Feb;96(2):328-35, table of contents. doi: 10.1097/00000539-200302000-00007. [DOI] [PubMed] [Google Scholar]
  24. Oh-Ishi Masamichi, Maeda Tadakazu. Separation techniques for high-molecular-mass proteins. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 May 5;771(1-2):49–66. doi: 10.1016/s1570-0232(02)00112-5. [DOI] [PubMed] [Google Scholar]
  25. Prou E., Margaritis I., Tessier F., Marini J. F. Effects of strenuous exercise on serum myosin heavy chain fragments in male triathletes. Int J Sports Med. 1996 May;17(4):263–267. doi: 10.1055/s-2007-972844. [DOI] [PubMed] [Google Scholar]
  26. Rodenburg J. B., Bär P. R., De Boer R. W. Relations between muscle soreness and biochemical and functional outcomes of eccentric exercise. J Appl Physiol (1985) 1993 Jun;74(6):2976–2983. doi: 10.1152/jappl.1993.74.6.2976. [DOI] [PubMed] [Google Scholar]
  27. Santaló Bel Miguel, Guindo Soldevila Josep, Ordóez Llanos Jordi. Marcadores biológicos de necrosis miocárdica. Rev Esp Cardiol. 2003 Jul;56(7):703–720. doi: 10.1016/s0300-8932(03)76942-5. [DOI] [PubMed] [Google Scholar]
  28. Shave Robert, Dawson Ellen, Whyte Gregory, George Keith, Ball Derek, Collinson Paul, Gaze David. The cardiospecificity of the third-generation cTnT assay after exercise-induced muscle damage. Med Sci Sports Exerc. 2002 Apr;34(4):651–654. doi: 10.1097/00005768-200204000-00014. [DOI] [PubMed] [Google Scholar]
  29. Sorichter S., Mair J., Koller A., Gebert W., Rama D., Calzolari C., Artner-Dworzak E., Puschendorf B. Skeletal troponin I as a marker of exercise-induced muscle damage. J Appl Physiol (1985) 1997 Oct;83(4):1076–1082. doi: 10.1152/jappl.1997.83.4.1076. [DOI] [PubMed] [Google Scholar]
  30. Takagi Y., Yasuhara T., Gomi K. [Creatine kinase and its isozymes]. Rinsho Byori. 2001 Nov;Suppl 116:52–61. [PubMed] [Google Scholar]
  31. Takahashi M., Lee L., Shi Q., Gawad Y., Jackowski G. Use of enzyme immunoassay for measurement of skeletal troponin-I utilizing isoform-specific monoclonal antibodies. Clin Biochem. 1996 Aug;29(4):301–308. doi: 10.1016/0009-9120(96)00016-1. [DOI] [PubMed] [Google Scholar]
  32. Xing Yu, Huang Pei-jun, Zhang Kui-ming. [Cardiac troponin T and I: application in myocardial injury and forensic medicine]. Fa Yi Xue Za Zhi. 2003;19(4):242–244. [PubMed] [Google Scholar]

Articles from British Journal of Sports Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES