Abstract
Objectives: To compare cardiorespiratory responses between incremental treadmill (non-specific) and field (sport specific) tests in elite squash players.
Methods: Seven elite players (ranked 1 to 25 in their national federation including the World number 1) randomly performed an incremental treadmill test (TT) and a squash specific graded test (ST) to exhaustion. The ST consisted of repeated displacements replicating the game of squash, at increasing speed on the court. In both tests, ventilatory variables and heart rate were determined at the ventilatory threshold, respiratory compensation point, and maximal loads (max).
Results: Heart rate and percentage maximal oxygen uptake (V·O2MAX) at the ventilatory threshold and respiratory compensation point were not different between the ST and TT, whereas V·O2MAX was higher in the ST than in the TT (63.6 (3.0) v 54.9 (2.5) ml/kg/min; p<0.001). Time to exhaustion was not different between the ST and TT (1056 (180) v 962 (71) seconds) but correlated with the ranking of the players only in the ST (r = –0.96, p<0.001).
Conclusions: V·O2MAX values derived from laboratory testing were not relevant for accurately estimating fitness in elite squash players. So the ST may be used as an additional test for determination of training intensity. Improved training advice for prescribing aerobic exercise or perfecting stroke technique may result from these results.
Full Text
The Full Text of this article is available as a PDF (95.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bangsbo J., Lindquist F. Comparison of various exercise tests with endurance performance during soccer in professional players. Int J Sports Med. 1992 Feb;13(2):125–132. doi: 10.1055/s-2007-1021243. [DOI] [PubMed] [Google Scholar]
- Billat L. V. Use of blood lactate measurements for prediction of exercise performance and for control of training. Recommendations for long-distance running. Sports Med. 1996 Sep;22(3):157–175. doi: 10.2165/00007256-199622030-00003. [DOI] [PubMed] [Google Scholar]
- Chin M. K., Steininger K., So R. C., Clark C. R., Wong A. S. Physiological profiles and sport specific fitness of Asian elite squash players. Br J Sports Med. 1995 Sep;29(3):158–164. doi: 10.1136/bjsm.29.3.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christmass M. A., Richmond S. E., Cable N. T., Arthur P. G., Hartmann P. E. Exercise intensity and metabolic response in singles tennis. J Sports Sci. 1998 Nov;16(8):739–747. doi: 10.1080/026404198366371. [DOI] [PubMed] [Google Scholar]
- Chwalbińska-Moneta J., Kaciuba-Uściłko H., Krysztofiak H., Ziemba A., Krzemiński K., Kruk B., Nazar K. Relationship between EMG blood lactate, and plasma catecholamine thresholds during graded exercise in men. J Physiol Pharmacol. 1998 Sep;49(3):433–441. [PubMed] [Google Scholar]
- Davis J. A. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc. 1985 Feb;17(1):6–21. [PubMed] [Google Scholar]
- Doherty M., Nobbs L., Noakes T. D. Low frequency of the "plateau phenomenon" during maximal exercise in elite British athletes. Eur J Appl Physiol. 2003 May 21;89(6):619–623. doi: 10.1007/s00421-003-0845-z. [DOI] [PubMed] [Google Scholar]
- Foster C., Green M. A., Snyder A. C., Thompson N. N. Physiological responses during simulated competition. Med Sci Sports Exerc. 1993 Jul;25(7):877–882. doi: 10.1249/00005768-199307000-00018. [DOI] [PubMed] [Google Scholar]
- Gaesser G. A., Poole D. C. Lactate and ventilatory thresholds: disparity in time course of adaptations to training. J Appl Physiol (1985) 1986 Sep;61(3):999–1004. doi: 10.1152/jappl.1986.61.3.999. [DOI] [PubMed] [Google Scholar]
- Lees Adrian. Science and the major racket sports: a review. J Sports Sci. 2003 Sep;21(9):707–732. doi: 10.1080/0264041031000140275. [DOI] [PubMed] [Google Scholar]
- McLaughlin J. E., King G. A., Howley E. T., Bassett D. R., Jr, Ainsworth B. E. Validation of the COSMED K4 b2 portable metabolic system. Int J Sports Med. 2001 May;22(4):280–284. doi: 10.1055/s-2001-13816. [DOI] [PubMed] [Google Scholar]
- Montpetit R. R. Applied physiology of squash. Sports Med. 1990 Jul;10(1):31–41. doi: 10.2165/00007256-199010010-00004. [DOI] [PubMed] [Google Scholar]
- Poole D. C., Gaesser G. A. Response of ventilatory and lactate thresholds to continuous and interval training. J Appl Physiol (1985) 1985 Apr;58(4):1115–1121. doi: 10.1152/jappl.1985.58.4.1115. [DOI] [PubMed] [Google Scholar]
- Roels Belle, Millet Grégoire P., Marcoux Christophe J. L., Coste Olivier, Bentley David J., Candau Robin B. Effects of hypoxic interval training on cycling performance. Med Sci Sports Exerc. 2005 Jan;37(1):138–146. doi: 10.1249/01.mss.0000150077.30672.88. [DOI] [PubMed] [Google Scholar]
- Santos Edil Luis, Giannella-Neto Antonio. Comparison of computerized methods for detecting the ventilatory thresholds. Eur J Appl Physiol. 2004 Dec;93(3):315–324. doi: 10.1007/s00421-004-1166-6. [DOI] [PubMed] [Google Scholar]
- Smekal Gerhard, von Duvillard Serge P., Pokan Rochus, Tschan Harald, Baron Ramon, Hofmann Peter, Wonisch Manfred, Bachl Norbert. Changes in blood lactate and respiratory gas exchange measures in sports with discontinuous load profiles. Eur J Appl Physiol. 2003 Apr 24;89(5):489–495. doi: 10.1007/s00421-003-0824-4. [DOI] [PubMed] [Google Scholar]
- Steininger K., Wodick R. E. Sports-specific fitness testing in squash. Br J Sports Med. 1987 Jun;21(2):23–26. doi: 10.1136/bjsm.21.2.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whipp B. J., Davis J. A., Wasserman K. Ventilatory control of the 'isocapnic buffering' region in rapidly-incremental exercise. Respir Physiol. 1989 Jun;76(3):357–367. doi: 10.1016/0034-5687(89)90076-5. [DOI] [PubMed] [Google Scholar]
- Wonisch M., Hofmann P., Schwaberger G., von Duvillard S. P., Klein W. Validation of a field test for the non-invasive determination of badminton specific aerobic performance. Br J Sports Med. 2003 Apr;37(2):115–118. doi: 10.1136/bjsm.37.2.115. [DOI] [PMC free article] [PubMed] [Google Scholar]