Skip to main content
British Journal of Sports Medicine logoLink to British Journal of Sports Medicine
. 2005 Aug;39(8):521–526. doi: 10.1136/bjsm.2004.014266

"Bounce at the Bell": a novel program of short bouts of exercise improves proximal femur bone mass in early pubertal children

H McKay 1, L MacLean 1, M Petit 1, K MacKelvie-O'Brien 1, P Janssen 1, T Beck 1, K Khan 1
PMCID: PMC1725273  PMID: 16046335

Abstract

Objectives: To examine the effects of a simple and inexpensive physical activity intervention on change in bone mass and structure in school aged children.

Methods: Fifty one children (n = 23 boys and 28 girls; mean age 10.1 years) participated in "Bounce at the Bell" which consisted of 10 counter-movement jumps 3x per day (total ∼3 min/day). Controls were 71 matched children who followed usual school practice. We assessed dietary calcium, physical activity, physical performance, and anthropometry in September and after 8 months of intervention (June). We measured bone mineral content (BMC) and bone area at the lumbar spine, total body, and proximal femur. Proximal femur scans were also analysed for bone geometry and structural strength using the hip structural analysis program. Lean and fat mass (g) were also calculated.

Results: Groups were similar at baseline and did not differ in weight, height, total body, lumbar spine, proximal femur, or femoral neck BMC. Control children had a greater increase in adjusted total body BMC (1.4%). Intervention children gained significantly more BMC at the total proximal femur (2%) and the intertrochanteric region (27%). Change in bone structural parameters did not differ between groups.

Conclusions: This novel, easily implemented exercise program, took only a few minutes each day and enhanced bone mass at the weight bearing proximal femur in early pubertal children. A large, randomised study of boys and girls should be undertaken powered to test the effectiveness of Bounce at the Bell in children at different stages of maturity, and in boys and girls independently.

Full Text

The Full Text of this article is available as a PDF (90.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey D. A., Faulkner R. A., McKay H. A. Growth, physical activity, and bone mineral acquisition. Exerc Sport Sci Rev. 1996;24:233–266. [PubMed] [Google Scholar]
  2. Bailey D. A., McKay H. A., Mirwald R. L., Crocker P. R., Faulkner R. A. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999 Oct;14(10):1672–1679. doi: 10.1359/jbmr.1999.14.10.1672. [DOI] [PubMed] [Google Scholar]
  3. Barr S. I. Associations of social and demographic variables with calcium intakes of high school students. J Am Diet Assoc. 1994 Mar;94(3):260-6, 269; quiz 267-8. doi: 10.1016/0002-8223(94)90366-2. [DOI] [PubMed] [Google Scholar]
  4. Bass S. L. The prepubertal years: a uniquely opportune stage of growth when the skeleton is most responsive to exercise? Sports Med. 2000 Aug;30(2):73–78. doi: 10.2165/00007256-200030020-00001. [DOI] [PubMed] [Google Scholar]
  5. Beck T. J., Ruff C. B., Warden K. E., Scott W. W., Jr, Rao G. U. Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol. 1990 Jan;25(1):6–18. doi: 10.1097/00004424-199001000-00004. [DOI] [PubMed] [Google Scholar]
  6. Bonjour J. P., Theintz G., Buchs B., Slosman D., Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991 Sep;73(3):555–563. doi: 10.1210/jcem-73-3-555. [DOI] [PubMed] [Google Scholar]
  7. Bradney M., Pearce G., Naughton G., Sullivan C., Bass S., Beck T., Carlson J., Seeman E. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res. 1998 Dec;13(12):1814–1821. doi: 10.1359/jbmr.1998.13.12.1814. [DOI] [PubMed] [Google Scholar]
  8. Crocker P. R., Bailey D. A., Faulkner R. A., Kowalski K. C., McGrath R. Measuring general levels of physical activity: preliminary evidence for the Physical Activity Questionnaire for Older Children. Med Sci Sports Exerc. 1997 Oct;29(10):1344–1349. doi: 10.1097/00005768-199710000-00011. [DOI] [PubMed] [Google Scholar]
  9. Fuchs R. K., Bauer J. J., Snow C. M. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res. 2001 Jan;16(1):148–156. doi: 10.1359/jbmr.2001.16.1.148. [DOI] [PubMed] [Google Scholar]
  10. Glastre C., Braillon P., David L., Cochat P., Meunier P. J., Delmas P. D. Measurement of bone mineral content of the lumbar spine by dual energy x-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab. 1990 May;70(5):1330–1333. doi: 10.1210/jcem-70-5-1330. [DOI] [PubMed] [Google Scholar]
  11. Heinonen A., Sievänen H., Kannus P., Oja P., Pasanen M., Vuori I. High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int. 2000;11(12):1010–1017. doi: 10.1007/s001980070021. [DOI] [PubMed] [Google Scholar]
  12. Järvinen T. L., Kannus P., Sievänen H. Have the DXA-based exercise studies seriously underestimated the effects of mechanical loading on bone? J Bone Miner Res. 1999 Sep;14(9):1634–1635. doi: 10.1359/jbmr.1999.14.9.1634. [DOI] [PubMed] [Google Scholar]
  13. Kannus P., Haapasalo H., Sankelo M., Sievänen H., Pasanen M., Heinonen A., Oja P., Vuori I. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med. 1995 Jul 1;123(1):27–31. doi: 10.7326/0003-4819-123-1-199507010-00003. [DOI] [PubMed] [Google Scholar]
  14. MacKelvie K. J., Khan K. M., McKay H. A. Is there a critical period for bone response to weight-bearing exercise in children and adolescents? a systematic review. Br J Sports Med. 2002 Aug;36(4):250–257. doi: 10.1136/bjsm.36.4.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MacKelvie K. J., McKay H. A., Petit M. A., Moran O., Khan K. M. Bone mineral response to a 7-month randomized controlled, school-based jumping intervention in 121 prepubertal boys: associations with ethnicity and body mass index. J Bone Miner Res. 2002 May;17(5):834–844. doi: 10.1359/jbmr.2002.17.5.834. [DOI] [PubMed] [Google Scholar]
  16. MacKelvie Kerry J., Khan Karim M., Petit Moira A., Janssen Patricia A., McKay Heather A. A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls. Pediatrics. 2003 Dec;112(6 Pt 1):e447–e447. doi: 10.1542/peds.112.6.e447. [DOI] [PubMed] [Google Scholar]
  17. MacKelvie Kerry J., Petit Moira A., Khan Karim M., Beck Thomas J., McKay Heather A. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone. 2004 Apr;34(4):755–764. doi: 10.1016/j.bone.2003.12.017. [DOI] [PubMed] [Google Scholar]
  18. Mackelvie K. J., McKay H. A., Khan K. M., Crocker P. R. A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr. 2001 Oct;139(4):501–508. doi: 10.1067/mpd.2001.118190. [DOI] [PubMed] [Google Scholar]
  19. McKay H. A., Macdonald H., Reed K. E., Khan K. M. Exercise interventions for health: time to focus on dimensions, delivery, and dollars. Br J Sports Med. 2003 Apr;37(2):98–99. doi: 10.1136/bjsm.37.2.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McKay H. A., Petit M. A., Schutz R. W., Prior J. C., Barr S. I., Khan K. M. Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and early pubescent children. J Pediatr. 2000 Feb;136(2):156–162. doi: 10.1016/s0022-3476(00)70095-3. [DOI] [PubMed] [Google Scholar]
  21. McKay H., Tsang G., Heinonen A., MacKelvie K., Sanderson D., Khan K. M. Ground reaction forces associated with an effective elementary school based jumping intervention. Br J Sports Med. 2005 Jan;39(1):10–14. doi: 10.1136/bjsm.2003.008615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Morris F. L., Naughton G. A., Gibbs J. L., Carlson J. S., Wark J. D. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res. 1997 Sep;12(9):1453–1462. doi: 10.1359/jbmr.1997.12.9.1453. [DOI] [PubMed] [Google Scholar]
  23. Petit M. A., McKay H. A., MacKelvie K. J., Heinonen A., Khan K. M., Beck T. J. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002 Mar;17(3):363–372. doi: 10.1359/jbmr.2002.17.3.363. [DOI] [PubMed] [Google Scholar]
  24. Robling A. G., Burr D. B., Turner C. H. Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol. 2001 Oct;204(Pt 19):3389–3399. doi: 10.1242/jeb.204.19.3389. [DOI] [PubMed] [Google Scholar]
  25. Seeman Ego. An exercise in geometry. J Bone Miner Res. 2002 Mar;17(3):373–380. doi: 10.1359/jbmr.2002.17.3.373. [DOI] [PubMed] [Google Scholar]
  26. Theintz G., Buchs B., Rizzoli R., Slosman D., Clavien H., Sizonenko P. C., Bonjour J. P. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992 Oct;75(4):1060–1065. doi: 10.1210/jcem.75.4.1400871. [DOI] [PubMed] [Google Scholar]
  27. Umemura Y., Ishiko T., Yamauchi T., Kurono M., Mashiko S. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res. 1997 Sep;12(9):1480–1485. doi: 10.1359/jbmr.1997.12.9.1480. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Sports Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES