Abstract
Objective: This study was designed to investigate bone properties using heel quantitative ultrasound (QUS) in young adults participating in various sports.
Methods: A cross sectional study was performed on Chinese male students (n = 55), aged 18–22 years. Subjects with previous fractures or suffering from any diseases known to affect bone metabolism or taking any medication with such an effect, were not included. The subjects were categorised according to their main sporting activities, including soccer (n = 15) (a high impact, weight bearing exercise), dancing (n = 10) (a low impact, weight bearing exercise), and swimming (n = 15) (non-weight bearing exercise). A sedentary group acted as controls (n = 15). A reproducibility study of the velocity of sound (VOS) and the broadband ultrasound attenuation (BUA) measurement was performed and analysed using the intraclass correlation coefficient (ICC).
Results: There was good intra-investigator and inter-investigator agreement (ICC⩾0.8; p<0.05) in the measurement of BUA and VOS. No significant differences in BUA and VOS (p>0.05) were found between the dominant and non-dominant heel. Soccer players (137±4.3 dB/MHz; 1575±56 m/s; 544.1±48.4) and dancers (134.6±3.7 dB/MHz; 1538±46 m/s; 503.0±37.0) had significantly higher BUA, VOS, and stiffness index (SI) scores (p<0.05), respectively, than swimmers (124.1±5.1 dB/MHz; 1495±42 m/s; 423.3±46.9) and the sedentary control group (119.9±6.1 dB/MHz; 1452±41 m/s; 369.9±46.4). A trend of a significant linear increase with the weight bearing and high impact exercise was revealed in all QUS parameters (p<0.05).
Conclusion: This cross sectional study indicated that regular participation in weight bearing exercise in young people might be beneficial for accruing peak bone mass and optimising bone structure.
Full Text
The Full Text of this article is available as a PDF (80.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakker Ingrid, Twisk Jos W. R., Van Mechelen Willem, Roos Jan C., Kemper Han C. G. Ten-year longitudinal relationship between physical activity and lumbar bone mass in (young) adults. J Bone Miner Res. 2003 Feb;18(2):325–332. doi: 10.1359/jbmr.2003.18.2.325. [DOI] [PubMed] [Google Scholar]
- Blanchet C., Giguère Y., Prud'homme D., Turcot-Lemay L., Dumont M., Leduc G., Côte S., Laflamme N., Rousseau F., Dodin S. Leisure physical activity is associated with quantitative ultrasound measurements independently of bone mineral density in postmenopausal women. Calcif Tissue Int. 2003 Jul 24;73(4):339–349. doi: 10.1007/s00223-002-1091-9. [DOI] [PubMed] [Google Scholar]
- Chappard C., Berger G., Roux C., Laugier P. Ultrasound measurement on the calcaneus: influence of immersion time and rotation of the foot. Osteoporos Int. 1999;9(4):318–326. doi: 10.1007/s001980050154. [DOI] [PubMed] [Google Scholar]
- Courteix D., Lespessailles E., Peres S. L., Obert P., Germain P., Benhamou C. L. Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos Int. 1998;8(2):152–158. doi: 10.1007/BF02672512. [DOI] [PubMed] [Google Scholar]
- Duncan Craig S., Blimkie Cameron J. R., Cowell Christopher T., Burke Stephen T., Briody Julie N., Howman-Giles Robert. Bone mineral density in adolescent female athletes: relationship to exercise type and muscle strength. Med Sci Sports Exerc. 2002 Feb;34(2):286–294. doi: 10.1097/00005768-200202000-00017. [DOI] [PubMed] [Google Scholar]
- Etherington J., Harris P. A., Nandra D., Hart D. J., Wolman R. L., Doyle D. V., Spector T. D. The effect of weight-bearing exercise on bone mineral density: a study of female ex-elite athletes and the general population. J Bone Miner Res. 1996 Sep;11(9):1333–1338. doi: 10.1002/jbmr.5650110918. [DOI] [PubMed] [Google Scholar]
- Falk Bareket, Bronshtein Zohar, Zigel Levana, Constantini Naama W., Eliakim Alon. Quantitative ultrasound of the tibia and radius in prepubertal and early-pubertal female athletes. Arch Pediatr Adolesc Med. 2003 Feb;157(2):139–143. doi: 10.1001/archpedi.157.2.139. [DOI] [PubMed] [Google Scholar]
- Fehling P. C., Alekel L., Clasey J., Rector A., Stillman R. J. A comparison of bone mineral densities among female athletes in impact loading and active loading sports. Bone. 1995 Sep;17(3):205–210. doi: 10.1016/8756-3282(95)00171-9. [DOI] [PubMed] [Google Scholar]
- Frost H. M. Why do bone strength and "mass" in aging adults become unresponsive to vigorous exercise? Insights of the Utah paradigm. J Bone Miner Metab. 1999;17(2):90–97. doi: 10.1007/s007740050070. [DOI] [PubMed] [Google Scholar]
- Grimston S. K., Willows N. D., Hanley D. A. Mechanical loading regime and its relationship to bone mineral density in children. Med Sci Sports Exerc. 1993 Nov;25(11):1203–1210. [PubMed] [Google Scholar]
- Hara S., Yanagi H., Amagai H., Endoh K., Tsuchiya S., Tomura S. Effect of physical activity during teenage years, based on type of sport and duration of exercise, on bone mineral density of young, premenopausal Japanese women. Calcif Tissue Int. 2000 Dec 22;68(1):23–30. doi: 10.1007/BF02684999. [DOI] [PubMed] [Google Scholar]
- Hart K. J., Shaw J. M., Vajda E., Hegsted M., Miller S. C. Swim-trained rats have greater bone mass, density, strength, and dynamics. J Appl Physiol (1985) 2001 Oct;91(4):1663–1668. doi: 10.1152/jappl.2001.91.4.1663. [DOI] [PubMed] [Google Scholar]
- Hawkins S. A., Schroeder E. T., Wiswell R. A., Jaque S. V., Marcell T. J., Costa K. Eccentric muscle action increases site-specific osteogenic response. Med Sci Sports Exerc. 1999 Sep;31(9):1287–1292. doi: 10.1097/00005768-199909000-00009. [DOI] [PubMed] [Google Scholar]
- Heinonen A., Oja P., Kannus P., Sievänen H., Haapasalo H., Mänttäri A., Vuori I. Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone. 1995 Sep;17(3):197–203. doi: 10.1016/8756-3282(95)00151-3. [DOI] [PubMed] [Google Scholar]
- Heinonen A., Sievänen H., Kannus P., Oja P., Pasanen M., Vuori I. High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int. 2000;11(12):1010–1017. doi: 10.1007/s001980070021. [DOI] [PubMed] [Google Scholar]
- Hung Vivian Wing-Yin, Qin Ling, Au Sze-Ki, Choy Wing-Yee, Leung Kwok-Sui, Leung Ping-Chung, Cheng Jack Chun-Yiu. Correlations of calcaneal QUS with pQCT measurements at distal tibia and non-weight-bearing distal radius. J Bone Miner Metab. 2004;22(5):486–490. doi: 10.1007/s00774-004-0511-5. [DOI] [PubMed] [Google Scholar]
- Kung A. W., Tang G. W., Luk K. D., Chu L. W. Evaluation of a new calcaneal quantitative ultrasound system and determination of normative ultrasound values in southern Chinese women. Osteoporos Int. 1999;9(4):312–317. doi: 10.1007/s001980050153. [DOI] [PubMed] [Google Scholar]
- Lehtonen-Veromaa M., Möttönen T., Nuotio I., Heinonen O. J., Viikari J. Influence of physical activity on ultrasound and dual-energy X-ray absorptiometry bone measurements in peripubertal girls: a cross-sectional study. Calcif Tissue Int. 2000 Apr;66(4):248–254. doi: 10.1007/s002230010050. [DOI] [PubMed] [Google Scholar]
- Mayoux-Benhamou M. A., Roux C., Rabourdin J. P., Revel M. Plantar flexion force is related to calcaneus bone ultrasonic parameters in postmenopausal women. Calcif Tissue Int. 1998 May;62(5):462–464. doi: 10.1007/s002239900461. [DOI] [PubMed] [Google Scholar]
- Messenger N., Scott S., McNaught-Davis P. Can the effects of exercise on bone quality be detected using the CUBA clinical ultrasound system? Br J Sports Med. 1998 Jun;32(2):162–166. doi: 10.1136/bjsm.32.2.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Njeh C. F., Boivin C. M., Langton C. M. The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int. 1997;7(1):7–22. doi: 10.1007/BF01623454. [DOI] [PubMed] [Google Scholar]
- Nordström P., Lorentzon R. Influence of heredity and environment on bone density in adolescent boys: a parent-offspring study. Osteoporos Int. 1999;10(4):271–277. doi: 10.1007/s001980050226. [DOI] [PubMed] [Google Scholar]
- Qin Ling, Au Szeki, Choy Wingyee, Leung Pingchung, Neff Marus, Lee Kwongman, Lau Mingchu, Woo Jean, Chan Kaiming. Regular Tai Chi Chuan exercise may retard bone loss in postmenopausal women: A case-control study. Arch Phys Med Rehabil. 2002 Oct;83(10):1355–1359. doi: 10.1053/apmr.2002.35098. [DOI] [PubMed] [Google Scholar]
- Rubin C. T., Lanyon L. E. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int. 1985 Jul;37(4):411–417. doi: 10.1007/BF02553711. [DOI] [PubMed] [Google Scholar]
- Scerpella T. A., Davenport M., Morganti C. M., Kanaley J. A., Johnson L. M. Dose related association of impact activity and bone mineral density in pre-pubertal girls. Calcif Tissue Int. 2002 Oct 21;72(1):24–31. doi: 10.1007/s00223-001-1131-x. [DOI] [PubMed] [Google Scholar]
- Schoenau E., Neu C. M., Mokov E., Wassmer G., Manz F. Influence of puberty on muscle area and cortical bone area of the forearm in boys and girls. J Clin Endocrinol Metab. 2000 Mar;85(3):1095–1098. doi: 10.1210/jcem.85.3.6451. [DOI] [PubMed] [Google Scholar]
- Snow-Harter C., Bouxsein M. L., Lewis B. T., Carter D. R., Marcus R. Effects of resistance and endurance exercise on bone mineral status of young women: a randomized exercise intervention trial. J Bone Miner Res. 1992 Jul;7(7):761–769. doi: 10.1002/jbmr.5650070706. [DOI] [PubMed] [Google Scholar]
- Stewart Alison, Reid David M. Quantitative ultrasound in osteoporosis. Semin Musculoskelet Radiol. 2002 Sep;6(3):229–232. doi: 10.1055/s-2002-36720. [DOI] [PubMed] [Google Scholar]
- Taaffe D. R., Suominen H., Ollikainen S., Cheng S. Calcaneal bone mineral and ultrasound attenuation in male athletes exposed to weight-bearing and nonweight-bearing activity. A cross-sectional report. J Sports Med Phys Fitness. 2001 Jun;41(2):243–249. [PubMed] [Google Scholar]