Skip to main content
British Journal of Sports Medicine logoLink to British Journal of Sports Medicine
. 2005 Aug;39(8):517–520. doi: 10.1136/bjsm.2004.014068

Effect of aerobic exercise training on mtDNA deletion in soleus muscle of trained and untrained Wistar rats

A Jafari 1, M Hosseinpourfaizi 1, M Houshmand 1, A Ravasi 1
PMCID: PMC1725296  PMID: 16046334

Abstract

Background: According to the theory of mitochondrial aging, oxidative stress plays a major role in aging and age related degenerative diseases. Since oxygen consumption and reactive oxygen species rate increase during aerobic exercise, we hypothesised that heavy aerobic training could lead to enhanced mitochondrial DNA (mtDNA) deletion in postmitotic tissues, leading in turn to premature aging and degenerative diseases.

Methods: Sixty adult male 2 month old Wistar14848 rats were divided into six equal groups. Two groups were trained for 3 months by running on a treadmill (5 days/week, incline 6°; group 1: 40 m/min, 20 min/day; group 2: 20 m/min, 40 min/day), while two sedentary groups participated in aerobic exercise only at the end of the study (incline 6°; group 3: 40 m/min; group 4: 20 m/min). To control for physical and physiological parameters, two groups of untrained animals were killed at the beginning (group 6) and end (group 5) of the study. Expand long PCR was used to investigate mtDNA deletion in soleus muscle and a sequencing method was used to confirm the mtDNA deletion break point.

Results: Our results did not show any mtDNA deletion in untrained rats or in those that underwent moderate training (group 2) We only found mtDNA deletion (4.6 kb) in the soleus muscle of heavily trained rats (group 1).

Conclusions: These results demonstrate that one session of aerobic exercise does not cause mtDNA deletion in skeletal muscle. The difference in results between heavy and moderate aerobic training may be due to low work rate or up-regulation of inducible antioxidant systems in moderate training.

Full Text

The Full Text of this article is available as a PDF (82.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong R. B., Laughlin M. H., Rome L., Taylor C. R. Metabolism of rats running up and down an incline. J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):518–521. doi: 10.1152/jappl.1983.55.2.518. [DOI] [PubMed] [Google Scholar]
  2. Chance B., Sies H., Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979 Jul;59(3):527–605. doi: 10.1152/physrev.1979.59.3.527. [DOI] [PubMed] [Google Scholar]
  3. Cooper J. M., Mann V. M., Schapira A. H. Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: effect of ageing. J Neurol Sci. 1992 Nov;113(1):91–98. doi: 10.1016/0022-510x(92)90270-u. [DOI] [PubMed] [Google Scholar]
  4. Cortopassi G. A., Arnheim N. Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res. 1990 Dec 11;18(23):6927–6933. doi: 10.1093/nar/18.23.6927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hartmann A., Pfuhler S., Dennog C., Germadnik D., Pilger A., Speit G. Exercise-induced DNA effects in human leukocytes are not accompanied by increased formation of 8-hydroxy-2'-deoxyguanosine or induction of micronuclei. Free Radic Biol Med. 1998 Jan 15;24(2):245–251. doi: 10.1016/s0891-5849(97)00249-9. [DOI] [PubMed] [Google Scholar]
  6. Iwai Koichi, Miyao Masahiko, Wadano Yasuyoshi, Iwamura Yukio. Dynamic changes of deleted mitochondrial DNA in human leucocytes after endurance exercise. Eur J Appl Physiol. 2002 Nov 27;88(6):515–519. doi: 10.1007/s00421-002-0745-7. [DOI] [PubMed] [Google Scholar]
  7. Kadenbach B., Münscher C., Frank V., Müller-Höcker J., Napiwotzki J. Human aging is associated with stochastic somatic mutations of mitochondrial DNA. Mutat Res. 1995 Oct;338(1-6):161–172. doi: 10.1016/0921-8734(95)00021-w. [DOI] [PubMed] [Google Scholar]
  8. Larsson N. G., Clayton D. A. Molecular genetic aspects of human mitochondrial disorders. Annu Rev Genet. 1995;29:151–178. doi: 10.1146/annurev.ge.29.120195.001055. [DOI] [PubMed] [Google Scholar]
  9. Larsson N. G., Holme E., Kristiansson B., Oldfors A., Tulinius M. Progressive increase of the mutated mitochondrial DNA fraction in Kearns-Sayre syndrome. Pediatr Res. 1990 Aug;28(2):131–136. doi: 10.1203/00006450-199008000-00011. [DOI] [PubMed] [Google Scholar]
  10. Lawler J. M., Powers S. K., Hammeren J., Martin A. D. Oxygen cost of treadmill running in 24-month-old Fischer-344 rats. Med Sci Sports Exerc. 1993 Nov;25(11):1259–1264. [PubMed] [Google Scholar]
  11. Leeuwenburgh C., Hollander J., Leichtweis S., Griffiths M., Gore M., Ji L. L. Adaptations of glutathione antioxidant system to endurance training are tissue and muscle fiber specific. Am J Physiol. 1997 Jan;272(1 Pt 2):R363–R369. doi: 10.1152/ajpregu.1997.272.1.R363. [DOI] [PubMed] [Google Scholar]
  12. Linnane A. W., Zhang C., Baumer A., Nagley P. Mitochondrial DNA mutation and the ageing process: bioenergy and pharmacological intervention. Mutat Res. 1992 Sep;275(3-6):195–208. doi: 10.1016/0921-8734(92)90023-i. [DOI] [PubMed] [Google Scholar]
  13. McCurdy D. T., 3rd, Kennedy J. M. Skeletal muscle mitochondria from AZT-treated rats have a diminished response to chronic electrical stimulation. J Appl Physiol (1985) 1996 Jul;81(1):326–334. doi: 10.1152/jappl.1996.81.1.326. [DOI] [PubMed] [Google Scholar]
  14. Müller-Höcker J. Mitochondria and ageing. Brain Pathol. 1992 Apr;2(2):149–158. doi: 10.1111/j.1750-3639.1992.tb00683.x. [DOI] [PubMed] [Google Scholar]
  15. Oh-ishi S., Kizaki T., Nagasawa J., Izawa T., Komabayashi T., Nagata N., Suzuki K., Taniguchi N., Ohno H. Effects of endurance training on superoxide dismutase activity, content and mRNA expression in rat muscle. Clin Exp Pharmacol Physiol. 1997 May;24(5):326–332. doi: 10.1111/j.1440-1681.1997.tb01196.x. [DOI] [PubMed] [Google Scholar]
  16. Ozawa T. Genetic and functional changes in mitochondria associated with aging. Physiol Rev. 1997 Apr;77(2):425–464. doi: 10.1152/physrev.1997.77.2.425. [DOI] [PubMed] [Google Scholar]
  17. Ozawa T. Mechanism of somatic mitochondrial DNA mutations associated with age and diseases. Biochim Biophys Acta. 1995 May 24;1271(1):177–189. doi: 10.1016/0925-4439(95)00026-z. [DOI] [PubMed] [Google Scholar]
  18. Poulsen H. E., Loft S., Vistisen K. Extreme exercise and oxidative DNA modification. J Sports Sci. 1996 Aug;14(4):343–346. doi: 10.1080/02640419608727720. [DOI] [PubMed] [Google Scholar]
  19. Powers S. K., Criswell D., Lawler J., Ji L. L., Martin D., Herb R. A., Dudley G. Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Physiol. 1994 Feb;266(2 Pt 2):R375–R380. doi: 10.1152/ajpregu.1994.266.2.R375. [DOI] [PubMed] [Google Scholar]
  20. Radák Zsolt, Naito Hisashi, Kaneko Takao, Tahara Shunichi, Nakamoto Hideko, Takahashi Ryoya, Cardozo-Pelaez Fernando, Goto Sataro. Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle. Pflugers Arch. 2002 Sep 13;445(2):273–278. doi: 10.1007/s00424-002-0918-6. [DOI] [PubMed] [Google Scholar]
  21. Richter C. Do mitochondrial DNA fragments promote cancer and aging? FEBS Lett. 1988 Dec 5;241(1-2):1–5. doi: 10.1016/0014-5793(88)81018-4. [DOI] [PubMed] [Google Scholar]
  22. Sakai Y., Iwamura Y., Hayashi J., Yamamoto N., Ohkoshi N., Nagata H. Acute exercise causes mitochondrial DNA deletion in rat skeletal muscle. Muscle Nerve. 1999 Feb;22(2):258–261. doi: 10.1002/(sici)1097-4598(199902)22:2<258::aid-mus15>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  23. Sen C. K., Marin E., Kretzschmar M., Hänninen O. Skeletal muscle and liver glutathione homeostasis in response to training, exercise, and immobilization. J Appl Physiol (1985) 1992 Oct;73(4):1265–1272. doi: 10.1152/jappl.1992.73.4.1265. [DOI] [PubMed] [Google Scholar]
  24. Sumida S., Doi T., Sakurai M., Yoshioka Y., Okamura K. Effect of a single bout of exercise and beta-carotene supplementation on the urinary excretion of 8-hydroxy-deoxyguanosine in humans. Free Radic Res. 1997 Dec;27(6):607–618. doi: 10.3109/10715769709097864. [DOI] [PubMed] [Google Scholar]
  25. Taivassalo T., Shoubridge E. A., Chen J., Kennaway N. G., DiMauro S., Arnold D. L., Haller R. G. Aerobic conditioning in patients with mitochondrial myopathies: physiological, biochemical, and genetic effects. Ann Neurol. 2001 Aug;50(2):133–141. doi: 10.1002/ana.1050. [DOI] [PubMed] [Google Scholar]
  26. Wallace D. C. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science. 1992 May 1;256(5057):628–632. doi: 10.1126/science.1533953. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Sports Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES