Abstract
Objectives: To investigate to what extent bone mass accrual is determined by physical activity and changes in lean, fat, and total body mass during growth.
Methods: Twenty six physically active and 16 age matched control boys were followed up for three years. All subjects were prepubertal at the start of the survey (mean (SEM) age 9.4 (0.3) years). The weekly physical activity of the active boys included compulsory physical education sessions (80–90 minutes a week), three hours a week of extracurricular sports participation, and occasional sports competitions at weekends. The physical activity of the control group was limited to the compulsory physical education curriculum. Bone mineral content (BMC) and areal density (BMD), lean mass, and fat mass were measured by dual energy x ray absorptiometry.
Results: The effect of sports participation on femoral bone mass accrual was remarkable. Femoral BMC and BMD increased twice as much in the active group as in the controls over the three year period (p<0.05). The greatest correlation was found between the increment in femoral bone mass and the increment in lean mass (BMC r = 0.67 and BMD r = 0.69, both p<0.001). Multiple regression analysis revealed enhancement in lean mass as the best predictor of the increment in femoral bone BMC (R = 0.65) and BMD (R = 0.69).
Conclusions: Long term sports participation during early adolescence results in greater accrual of bone mass. Enhancement of lean mass seems to be the best predictor of this bone mass accumulation. However, for a given muscle mass, a greater level of physical activity is associated with greater bone mass and density in peripubertal boys.
Full Text
The Full Text of this article is available as a PDF (110.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrams Steven A. Normal acquisition and loss of bone mass. Horm Res. 2003;60 (Suppl 3):71–76. doi: 10.1159/000074505. [DOI] [PubMed] [Google Scholar]
- Bailey D. A., McKay H. A., Mirwald R. L., Crocker P. R., Faulkner R. A. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999 Oct;14(10):1672–1679. doi: 10.1359/jbmr.1999.14.10.1672. [DOI] [PubMed] [Google Scholar]
- Bolotin H. H., Sievänen H. Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral density can seriously mislead diagnostic/prognostic interpretations of patient-specific bone fragility. J Bone Miner Res. 2001 May;16(5):799–805. doi: 10.1359/jbmr.2001.16.5.799. [DOI] [PubMed] [Google Scholar]
- Calbet J. A., Dorado C., Díaz-Herrera P., Rodríguez-Rodríguez L. P. High femoral bone mineral content and density in male football (soccer) players. Med Sci Sports Exerc. 2001 Oct;33(10):1682–1687. doi: 10.1097/00005768-200110000-00011. [DOI] [PubMed] [Google Scholar]
- Capozza R. F., Cointry G. R., Cure-Ramírez P., Ferretti J. L., Cure-Cure C. A DXA study of muscle-bone relationships in the whole body and limbs of 2512 normal men and pre- and post-menopausal women. Bone. 2004 Jul;35(1):283–295. doi: 10.1016/j.bone.2004.03.010. [DOI] [PubMed] [Google Scholar]
- Cooper C. Epidemiology of osteoporosis. Osteoporos Int. 1999;9 (Suppl 2):S2–S8. doi: 10.1007/pl00004156. [DOI] [PubMed] [Google Scholar]
- Courteix D., Lespessailles E., Loiseau-Peres S., Obert P., Ferry B., Benhamou C. L. Lean tissue mass is a better predictor of bone mineral content and density than body weight in prepubertal girls. Rev Rhum Engl Ed. 1998 May;65(5):328–336. [PubMed] [Google Scholar]
- Cummings S. R., Black D. M., Nevitt M. C., Browner W., Cauley J., Ensrud K., Genant H. K., Palermo L., Scott J., Vogt T. M. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet. 1993 Jan 9;341(8837):72–75. doi: 10.1016/0140-6736(93)92555-8. [DOI] [PubMed] [Google Scholar]
- Daly R. M., Saxon L., Turner C. H., Robling A. G., Bass S. L. The relationship between muscle size and bone geometry during growth and in response to exercise. Bone. 2004 Feb;34(2):281–287. doi: 10.1016/j.bone.2003.11.009. [DOI] [PubMed] [Google Scholar]
- Doyle F., Brown J., Lachance C. Relation between bone mass and muscle weight. Lancet. 1970 Feb 21;1(7643):391–393. doi: 10.1016/s0140-6736(70)91520-5. [DOI] [PubMed] [Google Scholar]
- Duke P. M., Litt I. F., Gross R. T. Adolescents' self-assessment of sexual maturation. Pediatrics. 1980 Dec;66(6):918–920. [PubMed] [Google Scholar]
- Faulkner R. A., Bailey D. A., Drinkwater D. T., Wilkinson A. A., Houston C. S., McKay H. A. Regional and total body bone mineral content, bone mineral density, and total body tissue composition in children 8-16 years of age. Calcif Tissue Int. 1993 Jul;53(1):7–12. doi: 10.1007/BF01352007. [DOI] [PubMed] [Google Scholar]
- Ferretti J. L., Capozza R. F., Cointry G. R., García S. L., Plotkin H., Alvarez Filgueira M. L., Zanchetta J. R. Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone. 1998 Jun;22(6):683–690. doi: 10.1016/s8756-3282(98)00046-5. [DOI] [PubMed] [Google Scholar]
- Frost H. M. Vital biomechanics: proposed general concepts for skeletal adaptations to mechanical usage. Calcif Tissue Int. 1988 Mar;42(3):145–156. doi: 10.1007/BF02556327. [DOI] [PubMed] [Google Scholar]
- Gustavsson A., Thorsen K., Nordström P. A 3-year longitudinal study of the effect of physical activity on the accrual of bone mineral density in healthy adolescent males. Calcif Tissue Int. 2003 Aug;73(2):108–114. doi: 10.1007/s00223-002-2026-1. [DOI] [PubMed] [Google Scholar]
- Heinonen A., McKay H. A., Whittall K. P., Forster B. B., Khan K. M. Muscle cross-sectional area is associated with specific site of bone in prepubertal girls: a quantitative magnetic resonance imaging study. Bone. 2001 Oct;29(4):388–392. doi: 10.1016/s8756-3282(01)00588-9. [DOI] [PubMed] [Google Scholar]
- Klein-Nulend J., Sterck J. G. H., Semeins C. M., Lips P., Joldersma M., Baart J. A., Burger E. H. Donor age and mechanosensitivity of human bone cells. Osteoporos Int. 2002;13(2):137–146. doi: 10.1007/s001980200005. [DOI] [PubMed] [Google Scholar]
- Lindsay R., Cosman F., Herrington B. S., Himmelstein S. Bone mass and body composition in normal women. J Bone Miner Res. 1992 Jan;7(1):55–63. doi: 10.1002/jbmr.5650070109. [DOI] [PubMed] [Google Scholar]
- Lohman T., Going S., Pamenter R., Hall M., Boyden T., Houtkooper L., Ritenbaugh C., Bare L., Hill A., Aickin M. Effects of resistance training on regional and total bone mineral density in premenopausal women: a randomized prospective study. J Bone Miner Res. 1995 Jul;10(7):1015–1024. doi: 10.1002/jbmr.5650100705. [DOI] [PubMed] [Google Scholar]
- Lu P. W., Cowell C. T., LLoyd-Jones S. A., Briody J. N., Howman-Giles R. Volumetric bone mineral density in normal subjects, aged 5-27 years. J Clin Endocrinol Metab. 1996 Apr;81(4):1586–1590. doi: 10.1210/jcem.81.4.8636372. [DOI] [PubMed] [Google Scholar]
- Nordström P., Pettersson U., Lorentzon R. Type of physical activity, muscle strength, and pubertal stage as determinants of bone mineral density and bone area in adolescent boys. J Bone Miner Res. 1998 Jul;13(7):1141–1148. doi: 10.1359/jbmr.1998.13.7.1141. [DOI] [PubMed] [Google Scholar]
- Pietrobelli Angelo, Faith Myles S., Wang Jack, Brambilla Paolo, Chiumello Giuseppe, Heymsfield Steven B. Association of lean tissue and fat mass with bone mineral content in children and adolescents. Obes Res. 2002 Jan;10(1):56–60. doi: 10.1038/oby.2002.8. [DOI] [PubMed] [Google Scholar]
- Rauch Frank, Bailey Donald A., Baxter-Jones Adam, Mirwald Robert, Faulkner Robert. The 'muscle-bone unit' during the pubertal growth spurt. Bone. 2004 May;34(5):771–775. doi: 10.1016/j.bone.2004.01.022. [DOI] [PubMed] [Google Scholar]
- Reid I. R., Ames R., Evans M. C., Sharpe S., Gamble G., France J. T., Lim T. M., Cundy T. F. Determinants of total body and regional bone mineral density in normal postmenopausal women--a key role for fat mass. J Clin Endocrinol Metab. 1992 Jul;75(1):45–51. doi: 10.1210/jcem.75.1.1619030. [DOI] [PubMed] [Google Scholar]
- Schoenau E., Frost H. M. The "muscle-bone unit" in children and adolescents. Calcif Tissue Int. 2002 Apr 19;70(5):405–407. doi: 10.1007/s00223-001-0048-8. [DOI] [PubMed] [Google Scholar]
- Schönau E. The development of the skeletal system in children and the influence of muscular strength. Horm Res. 1998;49(1):27–31. doi: 10.1159/000023122. [DOI] [PubMed] [Google Scholar]
- Seeman E. Clinical review 137: Sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab. 2001 Oct;86(10):4576–4584. doi: 10.1210/jcem.86.10.7960. [DOI] [PubMed] [Google Scholar]
- Slemenda C. W., Miller J. Z., Hui S. L., Reister T. K., Johnston C. C., Jr Role of physical activity in the development of skeletal mass in children. J Bone Miner Res. 1991 Nov;6(11):1227–1233. doi: 10.1002/jbmr.5650061113. [DOI] [PubMed] [Google Scholar]
- Vicente-Rodriguez G., Dorado C., Perez-Gomez J., Gonzalez-Henriquez J. J., Calbet J. A. L. Enhanced bone mass and physical fitness in young female handball players. Bone. 2004 Nov;35(5):1208–1215. doi: 10.1016/j.bone.2004.06.012. [DOI] [PubMed] [Google Scholar]
- Vicente-Rodriguez G., Jimenez-Ramirez J., Ara I., Serrano-Sanchez J. A., Dorado C., Calbet J. A. L. Enhanced bone mass and physical fitness in prepubescent footballers. Bone. 2003 Nov;33(5):853–859. doi: 10.1016/j.bone.2003.08.003. [DOI] [PubMed] [Google Scholar]
- Vicente-Rodriguez German, Ara Ignacio, Perez-Gomez Jorge, Serrano-Sanchez Jose A., Dorado Cecilia, Calbet Jose A. L. High femoral bone mineral density accretion in prepubertal soccer players. Med Sci Sports Exerc. 2004 Oct;36(10):1789–1795. doi: 10.1249/01.mss.0000142311.75866.d7. [DOI] [PubMed] [Google Scholar]