Skip to main content
Emergency Medicine Journal : EMJ logoLink to Emergency Medicine Journal : EMJ
. 2001 Mar;18(2):81–89. doi: 10.1136/emj.18.2.81

The therapeutic potential of regulated hypothermia

C Gordon 1
PMCID: PMC1725531  PMID: 11300205

Abstract

Reducing body temperature of rodents has been found to improve their survival to ischaemia, hypoxia, chemical toxicants, and many other types of insults. Larger species, including humans, may also benefit from a lower body temperature when recovering from CNS ischaemia and other traumatic insults. Rodents subjected to these insults undergo a regulated hypothermic response (that is, decrease in set point temperature) characterised by preference for cooler ambient temperatures, peripheral vasodilatation, and reduced metabolic rate. However, forced hypothermia (that is, body temperature forced below set point) is the only method used in the study and treatment of human pathological insults. The therapeutic efficacy of the hypothermic treatment is likely to be influenced by the nature of the reduction in body temperature (that is, forced versus regulated). Homeostatic mechanisms counter forced reductions in body temperature resulting in physiological stress and decreased efficacy of the hypothermic treatment. On the other hand, regulated hypothermia would seem to be the best means of achieving a therapeutic benefit because thermal homeostatic systems mediate a controlled reduction in core temperature.

Full Text

The Full Text of this article is available as a PDF (175.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astrup J. Energy-requiring cell functions in the ischemic brain. Their critical supply and possible inhibition in protective therapy. J Neurosurg. 1982 Apr;56(4):482–497. doi: 10.3171/jns.1982.56.4.0482. [DOI] [PubMed] [Google Scholar]
  2. Beilin B., Shavit Y., Razumovsky J., Wolloch Y., Zeidel A., Bessler H. Effects of mild perioperative hypothermia on cellular immune responses. Anesthesiology. 1998 Nov;89(5):1133–1140. doi: 10.1097/00000542-199811000-00013. [DOI] [PubMed] [Google Scholar]
  3. Bejanian M., Finn D. A., Syapin P. J., Alkana R. L. Body temperature and ethanol pharmacokinetics in temperature-challenged mice. Alcohol. 1990 Jul-Aug;7(4):331–337. doi: 10.1016/0741-8329(90)90092-q. [DOI] [PubMed] [Google Scholar]
  4. Buchan A., Pulsinelli W. A. Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci. 1990 Jan;10(1):311–316. doi: 10.1523/JNEUROSCI.10-01-00311.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Busto R., Dietrich W. D., Globus M. Y., Valdés I., Scheinberg P., Ginsberg M. D. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab. 1987 Dec;7(6):729–738. doi: 10.1038/jcbfm.1987.127. [DOI] [PubMed] [Google Scholar]
  6. Clark D. J., Fewell J. E. Decreased body-core temperature during acute hypoxemia in guinea pigs during postnatal maturation: a regulated thermoregulatory response. Can J Physiol Pharmacol. 1996 Mar;74(3):331–336. [PubMed] [Google Scholar]
  7. Clark W. G. Changes in body temperature after administration of antipyretics, LSD, delta 9-THC and related agents: II. Neurosci Biobehav Rev. 1987 Spring;11(1):35–96. doi: 10.1016/s0149-7634(87)80003-9. [DOI] [PubMed] [Google Scholar]
  8. Clark W. G., Lipton J. M. Changes in body temperature after administration of amino acids, peptides, dopamine, neuroleptics and related agents: II. Neurosci Biobehav Rev. 1985 Summer;9(2):299–371. doi: 10.1016/0149-7634(85)90052-1. [DOI] [PubMed] [Google Scholar]
  9. Clifton G. L., Allen S., Berry J., Koch S. M. Systemic hypothermia in treatment of brain injury. J Neurotrauma. 1992 May;9 (Suppl 2):S487–S495. [PubMed] [Google Scholar]
  10. Colbourne F., Sutherland G., Corbett D. Postischemic hypothermia. A critical appraisal with implications for clinical treatment. Mol Neurobiol. 1997 Jun;14(3):171–201. doi: 10.1007/BF02740655. [DOI] [PubMed] [Google Scholar]
  11. Dietrich W. D. The importance of brain temperature in cerebral injury. J Neurotrauma. 1992 May;9 (Suppl 2):S475–S485. [PubMed] [Google Scholar]
  12. Dyer R. S., Howell W. E. Triethyltin: ambient temperature alters visual system toxicity. Neurobehav Toxicol Teratol. 1982 Mar-Apr;4(2):267–271. [PubMed] [Google Scholar]
  13. Finn D. A., Bejanian M., Jones B. L., Syapin P. J., Alkana R. L. Temperature affects ethanol lethality in C57BL/6, 129, LS and SS mice. Pharmacol Biochem Behav. 1989 Oct;34(2):375–380. doi: 10.1016/0091-3057(89)90329-8. [DOI] [PubMed] [Google Scholar]
  14. Gambassi G., Cerbai E., Pahor M., Capogrossi M. C., Carbonin P., Mugelli A. Temperature modulates calcium homeostasis and ventricular arrhythmias in myocardial preparations. Cardiovasc Res. 1994 Mar;28(3):391–399. doi: 10.1093/cvr/28.3.391. [DOI] [PubMed] [Google Scholar]
  15. Giesbrecht G. G., Goheen M. S., Johnston C. E., Kenny G. P., Bristow G. K., Hayward J. S. Inhibition of shivering increases core temperature afterdrop and attenuates rewarming in hypothermic humans. J Appl Physiol (1985) 1997 Nov;83(5):1630–1634. doi: 10.1152/jappl.1997.83.5.1630. [DOI] [PubMed] [Google Scholar]
  16. Ginsberg M. D., Busto R. Combating hyperthermia in acute stroke: a significant clinical concern. Stroke. 1998 Feb;29(2):529–534. doi: 10.1161/01.str.29.2.529. [DOI] [PubMed] [Google Scholar]
  17. Gordon C. J. 24-hour control of body temperature in the rat: II. Diisopropyl fluorophosphate-induced hypothermia and hyperthermia. Pharmacol Biochem Behav. 1994 Nov;49(3):747–754. doi: 10.1016/0091-3057(94)90096-5. [DOI] [PubMed] [Google Scholar]
  18. Gordon C. J. Behavioral thermoregulatory response to chlorpyrifos in the rat. Toxicology. 1997 Dec 31;124(3):165–171. doi: 10.1016/s0300-483x(97)00147-9. [DOI] [PubMed] [Google Scholar]
  19. Gordon C. J., Fogelson L. Comparative effects of hypoxia on behavioral thermoregulation in rats, hamsters, and mice. Am J Physiol. 1991 Jan;260(1 Pt 2):R120–R125. doi: 10.1152/ajpregu.1991.260.1.R120. [DOI] [PubMed] [Google Scholar]
  20. Gordon C. J., Heath J. E. Integration and central processing in temperature regulation. Annu Rev Physiol. 1986;48:595–612. doi: 10.1146/annurev.ph.48.030186.003115. [DOI] [PubMed] [Google Scholar]
  21. Gordon C. J., Mohler F. S., Watkinson W. P., Rezvani A. H. Temperature regulation in laboratory mammals following acute toxic insult. Toxicology. 1988 Dec 30;53(2-3):161–178. doi: 10.1016/0300-483x(88)90211-9. [DOI] [PubMed] [Google Scholar]
  22. Gordon C. J., Stead A. G. Effect of alcohol on behavioral and autonomic thermoregulation in mice. Alcohol. 1986 Nov-Dec;3(6):339–343. doi: 10.1016/0741-8329(86)90050-9. [DOI] [PubMed] [Google Scholar]
  23. Gordon C. J. Toxic-induced hypothermia and hypometabolism: do they increase uncertainty in the extrapolation of toxicological data from experimental animals to humans? Neurosci Biobehav Rev. 1991 Spring;15(1):95–98. doi: 10.1016/s0149-7634(05)80098-3. [DOI] [PubMed] [Google Scholar]
  24. Gordon C. J., Yang Y. Thermoregulatory response to chemical toxicants and other insults. Extrapolation from experimental animal to human. Ann N Y Acad Sci. 1997 Mar 15;813:835–848. doi: 10.1111/j.1749-6632.1997.tb51789.x. [DOI] [PubMed] [Google Scholar]
  25. Haaland K., Løberg E. M., Steen P. A., Thoresen M. Posthypoxic hypothermia in newborn piglets. Pediatr Res. 1997 Apr;41(4 Pt 1):505–512. doi: 10.1203/00006450-199704000-00009. [DOI] [PubMed] [Google Scholar]
  26. Harri M. N. Effect of body temperature on cardiotoxicity of isoprenaline in rats. Acta Pharmacol Toxicol (Copenh) 1976 Aug;39(2):214–224. doi: 10.1111/j.1600-0773.1976.tb03172.x. [DOI] [PubMed] [Google Scholar]
  27. Henderson R. A., Whitehurst M. E., Morgan K. R., Carroll R. G. Reduced oxygen consumption precedes the drop in body core temperature caused by hemorrhage in rats. Shock. 2000;13(4):320–324. doi: 10.1097/00024382-200004000-00011. [DOI] [PubMed] [Google Scholar]
  28. Herman T. S., Teicher B. A., Cathcart K. N., Kaufmann M. E., Lee J. B., Lee M. H. Effect of hyperthermia on cis-diamminedichloroplatinum(II) (rhodamine 123)2[tetrachloroplatinum(II)] in a human squamous cell carcinoma line and a cis-diamminedichloroplatinum(II)-resistant subline. Cancer Res. 1988 Sep 15;48(18):5101–5105. [PubMed] [Google Scholar]
  29. Hindfelt B. The prognostic significance of subfebrility and fever in ischaemic cerebral infarction. Acta Neurol Scand. 1976 Jan;53(1):72–79. doi: 10.1111/j.1600-0404.1976.tb04326.x. [DOI] [PubMed] [Google Scholar]
  30. Kluger M. J. Fever: role of pyrogens and cryogens. Physiol Rev. 1991 Jan;71(1):93–127. doi: 10.1152/physrev.1991.71.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kurz A., Sessler D. I., Narzt E., Bekar A., Lenhardt R., Huemer G., Lackner F. Postoperative hemodynamic and thermoregulatory consequences of intraoperative core hypothermia. J Clin Anesth. 1995 Aug;7(5):359–366. doi: 10.1016/0952-8180(95)00028-g. [DOI] [PubMed] [Google Scholar]
  32. Lee K. C., Hamel D. W., Kunbel S. Rodent model of renal ischemia and reperfusion injury: influence of body temperature, seasonal variation, tumor necrosis factor, endogenous and exogenous antioxidants. Methods Find Exp Clin Pharmacol. 1993 Apr;15(3):153–159. [PubMed] [Google Scholar]
  33. Lei B., Tan X., Cai H., Xu Q., Guo Q. Effect of moderate hypothermia on lipid peroxidation in canine brain tissue after cardiac arrest and resuscitation. Stroke. 1994 Jan;25(1):147–152. doi: 10.1161/01.str.25.1.147. [DOI] [PubMed] [Google Scholar]
  34. Leikin J. B., Aks S. E., Andrews S., Auerbach P. S., Cooper M. A., Jacobsen T. D., Krenzelok E. P., Shicker L., Weiner S. L. Environmental injuries. Dis Mon. 1997 Dec;43(12):809–916. doi: 10.1016/s0011-5029(97)90024-9. [DOI] [PubMed] [Google Scholar]
  35. Lenhardt R., Marker E., Goll V., Tschernich H., Kurz A., Sessler D. I., Narzt E., Lackner F. Mild intraoperative hypothermia prolongs postanesthetic recovery. Anesthesiology. 1997 Dec;87(6):1318–1323. doi: 10.1097/00000542-199712000-00009. [DOI] [PubMed] [Google Scholar]
  36. Leon L. R., White A. A., Kluger M. J. Role of IL-6 and TNF in thermoregulation and survival during sepsis in mice. Am J Physiol. 1998 Jul;275(1 Pt 2):R269–R277. doi: 10.1152/ajpregu.1998.275.1.R269. [DOI] [PubMed] [Google Scholar]
  37. Li G. C., Hahn G. M., Shiu E. C. Cytotoxicity of commonly used solvents at elevated temperatures. J Cell Physiol. 1977 Dec;93(3):331–334. doi: 10.1002/jcp.1040930303. [DOI] [PubMed] [Google Scholar]
  38. Marion D. W., Leonov Y., Ginsberg M., Katz L. M., Kochanek P. M., Lechleuthner A., Nemoto E. M., Obrist W., Safar P., Sterz F. Resuscitative hypothermia. Crit Care Med. 1996 Feb;24(2 Suppl):S81–S89. [PubMed] [Google Scholar]
  39. Meden P., Overgaard K., Pedersen H., Boysen G. Effect of hypothermia and delayed thrombolysis in a rat embolic stroke model. Acta Neurol Scand. 1994 Aug;90(2):91–98. doi: 10.1111/j.1600-0404.1994.tb02686.x. [DOI] [PubMed] [Google Scholar]
  40. Miller D. B., O'Callaghan J. P. Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther. 1994 Aug;270(2):752–760. [PubMed] [Google Scholar]
  41. Minard F. N., Grant D. S. Hypothermia as a mechanism for drug-induced resistance to hypoxia. Biochem Pharmacol. 1982 Apr 1;31(7):1197–1203. doi: 10.1016/0006-2952(82)90004-1. [DOI] [PubMed] [Google Scholar]
  42. Palmer A. M., Marion D. W., Botscheller M. L., Redd E. E. Therapeutic hypothermia is cytoprotective without attenuating the traumatic brain injury-induced elevations in interstitial concentrations of aspartate and glutamate. J Neurotrauma. 1993 Winter;10(4):363–372. doi: 10.1089/neu.1993.10.363. [DOI] [PubMed] [Google Scholar]
  43. Plattner O., Kurz A., Sessler D. I., Ikeda T., Christensen R., Marder D., Clough D. Efficacy of intraoperative cooling methods. Anesthesiology. 1997 Nov;87(5):1089–1095. doi: 10.1097/00000542-199711000-00013. [DOI] [PubMed] [Google Scholar]
  44. Reith J., Jørgensen H. S., Pedersen P. M., Nakayama H., Raaschou H. O., Jeppesen L. L., Olsen T. S. Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome. Lancet. 1996 Feb 17;347(8999):422–425. doi: 10.1016/s0140-6736(96)90008-2. [DOI] [PubMed] [Google Scholar]
  45. Reith J., Jørgensen H. S., Pedersen P. M., Nakayama H., Raaschou H. O., Jeppesen L. L., Olsen T. S. Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome. Lancet. 1996 Feb 17;347(8999):422–425. doi: 10.1016/s0140-6736(96)90008-2. [DOI] [PubMed] [Google Scholar]
  46. Rohrer M. J., Natale A. M. Effect of hypothermia on the coagulation cascade. Crit Care Med. 1992 Oct;20(10):1402–1405. doi: 10.1097/00003246-199210000-00007. [DOI] [PubMed] [Google Scholar]
  47. Romanovsky A. A., Shido O., Sakurada S., Sugimoto N., Nagasaka T. Endotoxin shock: thermoregulatory mechanisms. Am J Physiol. 1996 Apr;270(4 Pt 2):R693–R703. doi: 10.1152/ajpregu.1996.270.4.R693. [DOI] [PubMed] [Google Scholar]
  48. Romanovsky A. A., Shido O., Sakurada S., Sugimoto N., Nagasaka T. Endotoxin shock: thermoregulatory mechanisms. Am J Physiol. 1996 Apr;270(4 Pt 2):R693–R703. doi: 10.1152/ajpregu.1996.270.4.R693. [DOI] [PubMed] [Google Scholar]
  49. Sessler D. I. Perioperative thermoregulation and heat balance. Ann N Y Acad Sci. 1997 Mar 15;813:757–777. doi: 10.1111/j.1749-6632.1997.tb51779.x. [DOI] [PubMed] [Google Scholar]
  50. Sirimanne E. S., Blumberg R. M., Bossano D., Gunning M., Edwards A. D., Gluckman P. D., Williams C. E. The effect of prolonged modification of cerebral temperature on outcome after hypoxic-ischemic brain injury in the infant rat. Pediatr Res. 1996 Apr;39(4 Pt 1):591–597. doi: 10.1203/00006450-199604000-00005. [DOI] [PubMed] [Google Scholar]
  51. Trescher W. H., Ishiwa S., Johnston M. V. Brief post-hypoxic-ischemic hypothermia markedly delays neonatal brain injury. Brain Dev. 1997 Jul;19(5):326–338. doi: 10.1016/s0387-7604(97)00027-2. [DOI] [PubMed] [Google Scholar]
  52. Watkinson W. P., Gordon C. J. Caveats regarding the use of the laboratory rat as a model for acute toxicological studies: modulation of the toxic response via physiological and behavioral mechanisms. Toxicology. 1993 Jul 11;81(1):15–31. doi: 10.1016/0300-483x(93)90153-j. [DOI] [PubMed] [Google Scholar]
  53. Wood S. C. Interactions between hypoxia and hypothermia. Annu Rev Physiol. 1991;53:71–85. doi: 10.1146/annurev.ph.53.030191.000443. [DOI] [PubMed] [Google Scholar]
  54. Yamaguchi S., Shimojo N., Sano K., Kano K., Hirota Y., Saisho A. Effects of environmental temperatures on the toxicity of methylmercury in rats. Bull Environ Contam Toxicol. 1984 May;32(5):543–549. doi: 10.1007/BF01607535. [DOI] [PubMed] [Google Scholar]
  55. Yamamoto H., Fujii K., Hayakawa T. Inhibitory effect of cold stress on lung tumours induced by 7,12-dimethylbenz[a]anthracene in mice. J Cancer Res Clin Oncol. 1995;121(7):393–396. doi: 10.1007/BF01212944. [DOI] [PubMed] [Google Scholar]
  56. Zager R. A., Altschuld R. Body temperature: an important determinant of severity of ischemic renal injury. Am J Physiol. 1986 Jul;251(1 Pt 2):F87–F93. doi: 10.1152/ajprenal.1986.251.1.F87. [DOI] [PubMed] [Google Scholar]

Articles from Emergency Medicine Journal : EMJ are provided here courtesy of BMJ Publishing Group

RESOURCES