Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1989 Aug;33(8):1153–1159. doi: 10.1128/aac.33.8.1153

Nucleotide sequence of the aacC2 gene, a gentamicin resistance determinant involved in a hospital epidemic of multiply resistant members of the family Enterobacteriaceae.

J S Vliegenthart 1, P A Ketelaar-van Gaalen 1, J A van de Klundert 1
PMCID: PMC172616  PMID: 2552900

Abstract

A gentamicin resistance determinant of a conjugative plasmid from Enterobacter cloacae was cloned on a 3.2-kilobase fragment in the PstI site of pBR322. Substrate profiles for eight aminoglycosides at three concentrations showed that the resistance was due to aminoglycoside-(3)-N-acetyltransferase isoenzyme II. Insertion mapping by the gamma-delta transposon revealed that the size of the gene was approximately 1 kilobase. Nucleotide sequencing of the aacC2 gene identified an open reading frame of 858 base pairs, preceded by a promoter and a ribosome-binding site. From these data the molecular mass of the protein was calculated to be 30.6 kilodaltons. A comparison of the nucleotide sequence of the aacC2 gene with those published for the aacC3 and aacC4 genes showed complete homology of the aacC2 gene and the presumed aacC3 gene. An internal restriction fragment of the gene used as a probe in colony hybridization demonstrated the presence of the aacC2 gene in 86% of 86 multiply resistant isolates of the family Enterobacteriaceae obtained during an 18-month hospital epidemic. This corroborates our earlier data on the enzyme identification by the susceptibility profiling method.

Full text

PDF
1153

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allmansberger R., Bräu B., Piepersberg W. Genes for gentamicin-(3)-N-acetyl-transferases III and IV. II. Nucleotide sequences of three AAC(3)-III genes and evolutionary aspects. Mol Gen Genet. 1985;198(3):514–520. doi: 10.1007/BF00332949. [DOI] [PubMed] [Google Scholar]
  2. Biddlecome S., Haas M., Davies J., Miller G. H., Rane D. F., Daniels P. J. Enzymatic modification of aminoglycoside antibiotics: a new 3-N-acetylating enzyme from a Pseudomonas aeruginosa isolate. Antimicrob Agents Chemother. 1976 Jun;9(6):951–955. doi: 10.1128/aac.9.6.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bolivar F., Backman K. Plasmids of Escherichia coli as cloning vectors. Methods Enzymol. 1979;68:245–267. doi: 10.1016/0076-6879(79)68018-7. [DOI] [PubMed] [Google Scholar]
  4. Bongaerts G. P., Vliegenthart J. S. Effect of aminoglycoside concentration on reaction rates of aminoglycoside-modifying enzymes. Antimicrob Agents Chemother. 1988 May;32(5):740–746. doi: 10.1128/aac.32.5.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bräu B., Pilz U., Piepersberg W. Genes for gentamicin-(3)-N-acetyltransferases III and IV: I. Nucleotide sequence of the AAC(3)-IV gene and possible involvement of an IS140 element in its expression. Mol Gen Genet. 1984;193(1):179–187. doi: 10.1007/BF00327434. [DOI] [PubMed] [Google Scholar]
  6. Chang A. C., Cohen S. N. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol. 1978 Jun;134(3):1141–1156. doi: 10.1128/jb.134.3.1141-1156.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies J., O'Connor S. Enzymatic modification of aminoglycoside antibiotics: 3-N-acetyltransferase with broad specificity that determines resistance to the novel aminoglycoside apramycin. Antimicrob Agents Chemother. 1978 Jul;14(1):69–72. doi: 10.1128/aac.14.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guyer M. S. The gamma delta sequence of F is an insertion sequence. J Mol Biol. 1978 Dec 15;126(3):347–365. doi: 10.1016/0022-2836(78)90045-1. [DOI] [PubMed] [Google Scholar]
  9. Haas M. J., Dowding J. E. Aminoglycoside-modifying enzymes. Methods Enzymol. 1975;43:611–628. doi: 10.1016/0076-6879(75)43124-x. [DOI] [PubMed] [Google Scholar]
  10. Kettner M., Navarová J., Langsádl L. Aminoglycoside resistance patterns in clinical isolates of Enterobacteriaceae from Czechoslovakia. J Antimicrob Chemother. 1987 Sep;20(3):383–387. doi: 10.1093/jac/20.3.383. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lambert T., Gerbaud G., Courvalin P. Transferable amikacin resistance in Acinetobacter spp. due to a new type of 3'-aminoglycoside phosphotransferase. Antimicrob Agents Chemother. 1988 Jan;32(1):15–19. doi: 10.1128/aac.32.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Le Goffic F., Martel A., Witchitz J. 3-N enzymatic acetylation of gentamicin, tobramycin, and kanamycin by Escherichia coli carrying an R factor. Antimicrob Agents Chemother. 1974 Dec;6(6):680–684. doi: 10.1128/aac.6.6.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lovering A. M., White L. O., Reeves D. S. AAC(1): a new aminoglycoside-acetylating enzyme modifying the Cl aminogroup of apramycin. J Antimicrob Chemother. 1987 Dec;20(6):803–813. doi: 10.1093/jac/20.6.803. [DOI] [PubMed] [Google Scholar]
  15. López-Cabrera M., Pérez-González J. A., Heinzel P., Piepersberg W., Jiménez A. Isolation and nucleotide sequencing of an aminocyclitol acetyltransferase gene from Streptomyces rimosus forma paromomycinus. J Bacteriol. 1989 Jan;171(1):321–328. doi: 10.1128/jb.171.1.321-328.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martin C., Gomez-Lus R., Ortiz J. M., Garcia-Lobo J. M. Structure and mobilization of an ampicillin and gentamicin resistance determinant. Antimicrob Agents Chemother. 1987 Aug;31(8):1266–1270. doi: 10.1128/aac.31.8.1266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Novick R. P., Clowes R. C., Cohen S. N., Curtiss R., 3rd, Datta N., Falkow S. Uniform nomenclature for bacterial plasmids: a proposal. Bacteriol Rev. 1976 Mar;40(1):168–189. doi: 10.1128/br.40.1.168-189.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  20. de Geus P., van Die I., Bergmans H., Tommassen J., de Haas G. Molecular cloning of pldA, the structural gene for outer membrane phospholipase of E. coli K12. Mol Gen Genet. 1983;190(1):150–155. doi: 10.1007/BF00330338. [DOI] [PubMed] [Google Scholar]
  21. van de Klundert J. A., Vliegenthart J. S., van Doorn E., Bongaerts G. P., Molendijk L., Mouton R. P. A simple method for the identification of aminoglycoside-modifying enzymes. J Antimicrob Chemother. 1984 Oct;14(4):339–348. doi: 10.1093/jac/14.4.339. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES