Abstract
Background and aims—It has been suggested that putrescine acts as a growth factor in the gut, but its exact function in some aspects of cellular metabolism is still in question. The aim of the present work was to identify some functions of putrescine in small bowel metabolism. Animals—Rats (about 80 g), in groups of five, were given either phytohaemagglutinin- or lactalbumin-containing diets, fed ad libitum or were fasted for 48 hours and re-fed for six or twelve hours before being killed. Methods—Uptake of intraperitoneally or intragastrically administered [14C]putrescine and its conversion to succinate by the rat small bowel mucosa was measured. Tissue polyamine and succinate contents were measured by high performance liquid chromatography and amino acid analysis respectively. Results—Uptake of putrescine by the small bowel mucosa from the systemic circulation and conversion of about 30% of this to succinate occurs in the epithelium of the healthy small bowel. Compared with rats given food ad libitum, putrescine uptake was doubled in fasted animals and more than 70% of it was converted to succinate. All these changes returned to control values on refeeding. Using phyto- haemagglutinin induced gut growth as a model, the uptake of putrescine from the systemic circulation by the serosal side of the small intestinal epithelium was increased immediately after growth was stimulated. During phytohaemagglutinin induced growth of the gut, putrescine was converted to succinate in the same proportion as in the healthy small bowel. Conclusions—The experiments identified a novel function for putrescine in gut metabolism: it can be used as an instant energy source when required.
Keywords: putrescine; luminal uptake; phytohaemagglutinin; succinate; basolateral uptake; small bowel
Full Text
The Full Text of this article is available as a PDF (104.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alarcon P., Lin C. H., Lebenthal E., Lee P. C. Interaction of malnutrition and difluoromethylornithine-induced intestinal mucosal damage: degree of severity and subsequent recovery. Digestion. 1988;41(2):68–77. doi: 10.1159/000199734. [DOI] [PubMed] [Google Scholar]
- Baer A. R., Cheeseman C. I., Thomson A. B. Substrate specificity in the stimulation of intestinal ornithine decarboxylase activity by refeeding after starvation. Biochim Biophys Acta. 1987 Apr 16;924(1):257–259. doi: 10.1016/0304-4165(87)90095-x. [DOI] [PubMed] [Google Scholar]
- Bamba T., Vaja S., Murphy G. M., Dowling R. H. Effect of fasting and feeding on polyamines and related enzymes along the villus: crypt axis. Digestion. 1990;46 (Suppl 2):424–429. doi: 10.1159/000200417. [DOI] [PubMed] [Google Scholar]
- Banwell J. G., Howard R., Kabir I., Adrian T. E., Diamond R. H., Abramowsky C. Small intestinal growth caused by feeding red kidney bean phytohemagglutinin lectin to rats. Gastroenterology. 1993 Jun;104(6):1669–1677. doi: 10.1016/0016-5085(93)90644-r. [DOI] [PubMed] [Google Scholar]
- Bardocz S., Brown D. S., Grant G., Pusztai A. Luminal and basolateral polyamine uptake by rat small intestine stimulated to grow by Phaseolus vulgaris lectin phytohaemagglutinin in vivo. Biochim Biophys Acta. 1990 Apr 23;1034(1):46–52. doi: 10.1016/0304-4165(90)90151-l. [DOI] [PubMed] [Google Scholar]
- Bardocz S., Grant G., Ewen S. W., Duguid T. J., Brown D. S., Englyst K., Pusztai A. Reversible effect of phytohaemagglutinin on the growth and metabolism of rat gastrointestinal tract. Gut. 1995 Sep;37(3):353–360. doi: 10.1136/gut.37.3.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'Agostino L., D'Argenio G., Ciacci C., Daniele B., Macchia V., Mazzacca G. Diamine oxidase in rat small bowel: distribution in different segments and cellular location. Enzyme. 1984;31(4):217–220. doi: 10.1159/000469529. [DOI] [PubMed] [Google Scholar]
- Fujimoto K., Granger D. N., Johnson L. R., Price V. H., Sakata T., Tso P. Circadian rhythm of ornithine decarboxylase activity in small intestine of fasted rats. Proc Soc Exp Biol Med. 1992 Jul;200(3):409–413. doi: 10.3181/00379727-200-43449. [DOI] [PubMed] [Google Scholar]
- Ginty D. D., Osborne D. L., Seidel E. R. Putrescine stimulates DNA synthesis in intestinal epithelial cells. Am J Physiol. 1989 Jul;257(1 Pt 1):G145–G150. doi: 10.1152/ajpgi.1989.257.1.G145. [DOI] [PubMed] [Google Scholar]
- Goodlad R. A., Gregory H., Wright N. A. Is polyamine synthesis involved in the proliferative response of the intestinal epithelium to urogastrone-epidermal growth factor? Clin Sci (Lond) 1989 Jun;76(6):595–598. doi: 10.1042/cs0760595. [DOI] [PubMed] [Google Scholar]
- Heby O., Persson L. Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem Sci. 1990 Apr;15(4):153–158. doi: 10.1016/0968-0004(90)90216-x. [DOI] [PubMed] [Google Scholar]
- Hosomi M., Stace N. H., Lirussi F., Smith S. M., Murphy G. M., Dowling R. H. Role of polyamines in intestinal adaptation in the rat. Eur J Clin Invest. 1987 Oct;17(5):375–385. doi: 10.1111/j.1365-2362.1987.tb01130.x. [DOI] [PubMed] [Google Scholar]
- Johnson L. R. Regulation of gastrointestinal mucosal growth. Physiol Rev. 1988 Apr;68(2):456–502. doi: 10.1152/physrev.1988.68.2.456. [DOI] [PubMed] [Google Scholar]
- Jänne J., Hölttä E. Putrescine metabolizing enzyme activities in some rat tissues during postnatal development. Acta Chem Scand. 1973;27(7):2399–2404. doi: 10.3891/acta.chem.scand.27-2399. [DOI] [PubMed] [Google Scholar]
- Jänne J., Pösö H., Raina A. Polyamines in rapid growth and cancer. Biochim Biophys Acta. 1978 Apr 6;473(3-4):241–293. doi: 10.1016/0304-419x(78)90015-x. [DOI] [PubMed] [Google Scholar]
- Luk G. D., Baylin S. B. Polyamines and intestinal growth--increased polyamine biosynthesis after jejunectomy. Am J Physiol. 1983 Nov;245(5 Pt 1):G656–G660. doi: 10.1152/ajpgi.1983.245.5.G656. [DOI] [PubMed] [Google Scholar]
- Luk G. D., Yang P. Distribution of polyamines and their biosynthetic enzymes in intestinal adaptation. Am J Physiol. 1988 Feb;254(2 Pt 1):G194–G200. doi: 10.1152/ajpgi.1988.254.2.G194. [DOI] [PubMed] [Google Scholar]
- Milovic V., Stein J., Piiper A., Gerhard R., Zeuzem S., Caspary W. F. Characterization of putrescine transport across the intestinal epithelium: study using isolated brush border and basolateral membrane vesicles of the enterocyte. Eur J Clin Invest. 1995 Feb;25(2):97–105. doi: 10.1111/j.1365-2362.1995.tb01533.x. [DOI] [PubMed] [Google Scholar]
- Pegg A. E. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J. 1986 Mar 1;234(2):249–262. doi: 10.1042/bj2340249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raul F., Gosse F., Galluser M., Hasselmann M., Seiler N. Functional and metabolic changes in intestinal mucosa of rats after enteral administration of ornithine alpha-ketoglutarate salt. JPEN J Parenter Enteral Nutr. 1995 Mar-Apr;19(2):145–150. doi: 10.1177/0148607195019002145. [DOI] [PubMed] [Google Scholar]
- Seidel E. R., Haddox M. K., Johnson L. R. Ileal mucosal growth during intraluminal infusion of ethylamine or putrescine. Am J Physiol. 1985 Oct;249(4 Pt 1):G434–G438. doi: 10.1152/ajpgi.1985.249.4.G434. [DOI] [PubMed] [Google Scholar]
- Seiler N., Knödgen B. High-performance liquid chromatographic procedure for the simultaneous determination of the natural polyamines and their monoacetyl derivatives. J Chromatogr. 1980 Dec 12;221(2):227–235. doi: 10.1016/s0378-4347(00)84307-8. [DOI] [PubMed] [Google Scholar]
- Sessa A., Tunici P., Ewen S. W., Grant G., Pusztai A., Bardocz S., Perin A. Diamine and polyamine oxidase activities in phytohaemagglutinin-induced growth of rat small intestine. Biochim Biophys Acta. 1995 May 11;1244(1):198–202. doi: 10.1016/0304-4165(95)00005-v. [DOI] [PubMed] [Google Scholar]