Skip to main content
Gut logoLink to Gut
. 1998 Feb;42(2):180–187. doi: 10.1136/gut.42.2.180

Increased expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in colonic mucosa of patients with active ulcerative colitis

H Kimura 1, R Hokari 1, S Miura 1, T Shigematsu 1, M Hirokawa 1, Y Akiba 1, I Kurose 1, H Higuchi 1, H Fujimori 1, Y Tsuzuki 1, H Serizawa 1, H Ishii 1
PMCID: PMC1727005  PMID: 9536941

Abstract

Background—Increased production of reactive metabolites of oxygen and nitrogen has been implicated in chronic inflammation of the gut. The object of this study was to examine the magnitude and location of nitric oxide synthase (NOS) activity and peroxynitrite formation in the colonic mucosa of patients with ulcerative colitis in relation to the degree of inflammation. 
Subjects—Thirty three patients with active ulcerative colitis (17 with mild or moderate inflammation, 16 with severe inflammation). 
Methods—Inducible NOS activity was determined in the colonic mucosa by measuring the conversion of L-arginine to citrulline in the absence of calcium. The localisation of NOS and nitrotyrosine immunoreactivity was assessed immunohistochemically using the labelled streptavidin biotin method. 
Results—Inducible NOS activity increased in parallell with the degree of inflammation of the mucosa. Expression of inducible NOS was found not only in the lamina propria, but also in the surface of the epithelium. Peroxynitrite formation as assessed by nitrotyrosine staining was frequently observed in the lamina propria of actively inflamed mucosa. 
Conclusions—Nitric oxide and peroxynitrite formation may play an important role in causing irreversible cellular injury to the colonic mucosa in patients with active ulcerative colitis. 



Keywords: nitric oxide; peroxynitrite; nitric oxide synthase; ulcerative colitis; colonic mucosa

Full Text

The Full Text of this article is available as a PDF (219.7 KB).

Figure 1 .

Figure 1

Detection of inducible nitric oxide synthase (iNOS) protein in the biopsy specimen of colonic mucosa by Western blotting with anti-iNOS antibody. Lane a, iNOS was not detected in homogenate of histologically normal mucosa from a control subject. Lane b, in the active UC mucosa with severe inflammation (grade 4), anti-iNOS antibody labelled a single major band which migrated at the 130 kDa position. Lane c, only a weak band was detected in the UC mucosa with mild inflammation (grade 2).

Figure 2 .

Figure 2

Inducible nitric oxide synthase (iNOS) activity in colonic mucosa. iNOS activity was determined in biopsy specimens from endoscopically normal (quiescent) mucosa and actively inflamed mucosa by monitoring the conversion of L-arginine to citrulline. Enzyme activities associated with mild or moderate inflammation (grade 2 or 3) and severe inflammation (grade 4 or 5) were compared. Values are expressed as means and SEM. *p<0.05 compared with quiescent mucosa. p<0.05 compared with colonic mucosa with grade 2 or 3 inflammation.

Figure 3 .

Figure 3

Immunohistochemical study of inducible nitric oxide synthase (iNOS) activity in actively inflamed ulcerative colitis mucosa. Localisation of iNOS immunoreactivity was examined using the labelled streptavidin biotin method with antibodies against iNOS (macNOS). The biopsy specimen was obtained from actively inflamed mucosa grade 4. (A) Significant iNOS reactivity was demonstrated in the surface epithelium of the colonic mucosa as well as in the lamina propria. (B) A negative control picture without primary antibody is also shown.(Original magnification × 100.)

Figure 4 .

Figure 4

Immunohistochemical study of inducible nitric oxide synthase (iNOS) activity in actively inflamed ulcerative colitis mucosa. Localisation of iNOS immunoreactivity was examined using the labelled streptavidin biotin method employing antibodies against iNOS (macNOS). The biopsy specimen was obtained from actively inflamed mucosa with grade 5 inflammation. In this patient, iNOS reactivity was confirmed in the surface epithelium of the colonic mucosa (A). A negative control picture without primary antibody is shown (B). (Original magnification × 400.)

Figure 5 .

Figure 5

Relation between inducible nitric oxide synthase (iNOS) enzyme activity and the site of iNOS immunoreactivity in the inflamed colonic mucosa of patients with active ulcerative colitis. Values are expressed as means and SEM. *p<0.05 compared with colonic mucosa without iNOS immunoreactivity. p<0.05 compared with the colonic mucosa with positive iNOS immunoreactivity observed in both lamina propria and epithelial cells.

Figure 6 .

Figure 6

Immunohistochemical study of nitrotyrosine activity in actively inflamed ulcerative colitis mucosa. Localisation of nitrotyrosine immunoreactivity was examined using the labelled streptavidin biotin method with antibodies against nitrotyrosine. The biopsy specimen was obtained from actively inflamed mucosa of grade 4 inflammation. Nitrotyrosine immunoreactivity was observed in the lamina propria of colonic mucosa (A). A negative control picture without primary antibody is shown (B). (Original magnification × 400.)

Figure 7 .

Figure 7

Immunohistochemical study of nitrotyrosine activity in actively inflamed ulcerative colitis mucosa. Localisation of nitrotyrosine immunoreactivity was examined using the labelled streptavidin biotin method with antibodies against nitrotyrosine. The biopsy specimen was obtained from grade 5 actively inflamed mucosa. In this patient, nitrotyrosine immunoreactivity was observed not only in the lamina propria, but also in the surface epithelium (A). A negative control picture without primary antibody is shown (B). (Original magnification × 400.)

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiko S., Grisham M. B. Spontaneous intestinal inflammation and nitric oxide metabolism in HLA-B27 transgenic rats. Gastroenterology. 1995 Jul;109(1):142–150. doi: 10.1016/0016-5085(95)90279-1. [DOI] [PubMed] [Google Scholar]
  2. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beckman J. S., Crow J. P. Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans. 1993 May;21(2):330–334. doi: 10.1042/bst0210330. [DOI] [PubMed] [Google Scholar]
  4. Belenky S. N., Robbins R. A., Rennard S. I., Gossman G. L., Nelson K. J., Rubinstein I. Inhibitors of nitric oxide synthase attenuate human neutrophil chemotaxis in vitro. J Lab Clin Med. 1993 Oct;122(4):388–394. [PubMed] [Google Scholar]
  5. Belenky S. N., Robbins R. A., Rubinstein I. Nitric oxide synthase inhibitors attenuate human monocyte chemotaxis in vitro. J Leukoc Biol. 1993 May;53(5):498–503. doi: 10.1002/jlb.53.5.498. [DOI] [PubMed] [Google Scholar]
  6. Boughton-Smith N. K., Evans S. M., Hawkey C. J., Cole A. T., Balsitis M., Whittle B. J., Moncada S. Nitric oxide synthase activity in ulcerative colitis and Crohn's disease. Lancet. 1993 Aug 7;342(8867):338–340. doi: 10.1016/0140-6736(93)91476-3. [DOI] [PubMed] [Google Scholar]
  7. Dignass A. U., Podolsky D. K., Rachmilewitz D. NO chi generation by cultured small intestinal epithelial cells. Dig Dis Sci. 1995 Sep;40(9):1859–1865. doi: 10.1007/BF02208647. [DOI] [PubMed] [Google Scholar]
  8. Granger D. L., Taintor R. R., Cook J. L., Hibbs J. B., Jr Injury of neoplastic cells by murine macrophages leads to inhibition of mitochondrial respiration. J Clin Invest. 1980 Feb;65(2):357–370. doi: 10.1172/JCI109679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grisham M. B., Specian R. D., Zimmerman T. E. Effects of nitric oxide synthase inhibition on the pathophysiology observed in a model of chronic granulomatous colitis. J Pharmacol Exp Ther. 1994 Nov;271(2):1114–1121. [PubMed] [Google Scholar]
  10. Grisham M. B., Yamada T. Neutrophils, nitrogen oxides, and inflammatory bowel disease. Ann N Y Acad Sci. 1992;664:103–115. doi: 10.1111/j.1749-6632.1992.tb39753.x. [DOI] [PubMed] [Google Scholar]
  11. Henry Y., Lepoivre M., Drapier J. C., Ducrocq C., Boucher J. L., Guissani A. EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J. 1993 Sep;7(12):1124–1134. doi: 10.1096/fasebj.7.12.8397130. [DOI] [PubMed] [Google Scholar]
  12. Hibbs J. B., Jr, Taintor R. R., Vavrin Z. Iron depletion: possible cause of tumor cell cytotoxicity induced by activated macrophages. Biochem Biophys Res Commun. 1984 Sep 17;123(2):716–723. doi: 10.1016/0006-291x(84)90288-2. [DOI] [PubMed] [Google Scholar]
  13. Hibi T., Ohara M., Kobayashi K., Brown W. R., Toda K., Takaishi H., Hosoda Y., Hayashi A., Iwao Y., Watanabe M. Enzyme linked immunosorbent assay (ELISA) and immunoprecipitation studies on anti-goblet cell antibody using a mucin producing cell line in patients with inflammatory bowel disease. Gut. 1994 Feb;35(2):224–230. doi: 10.1136/gut.35.2.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hogaboam C. M., Jacobson K., Collins S. M., Blennerhassett M. G. The selective beneficial effects of nitric oxide inhibition in experimental colitis. Am J Physiol. 1995 Apr;268(4 Pt 1):G673–G684. doi: 10.1152/ajpgi.1995.268.4.G673. [DOI] [PubMed] [Google Scholar]
  15. Huie R. E., Padmaja S. The reaction of no with superoxide. Free Radic Res Commun. 1993;18(4):195–199. doi: 10.3109/10715769309145868. [DOI] [PubMed] [Google Scholar]
  16. Knowles R. G., Merrett M., Salter M., Moncada S. Differential induction of brain, lung and liver nitric oxide synthase by endotoxin in the rat. Biochem J. 1990 Sep 15;270(3):833–836. doi: 10.1042/bj2700833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kooy N. W., Royall J. A., Ye Y. Z., Kelly D. R., Beckman J. S. Evidence for in vivo peroxynitrite production in human acute lung injury. Am J Respir Crit Care Med. 1995 Apr;151(4):1250–1254. doi: 10.1164/ajrccm/151.4.1250. [DOI] [PubMed] [Google Scholar]
  18. Kurose I., Miura S., Fukumura D., Yonei Y., Saito H., Tada S., Suematsu M., Tsuchiya M. Nitric oxide mediates Kupffer cell-induced reduction of mitochondrial energization in hepatoma cells: a comparison with oxidative burst. Cancer Res. 1993 Jun 1;53(11):2676–2682. [PubMed] [Google Scholar]
  19. Kwon N. S., Stuehr D. J., Nathan C. F. Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J Exp Med. 1991 Oct 1;174(4):761–767. doi: 10.1084/jem.174.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lundberg J. O., Hellström P. M., Lundberg J. M., Alving K. Greatly increased luminal nitric oxide in ulcerative colitis. Lancet. 1994 Dec 17;344(8938):1673–1674. doi: 10.1016/s0140-6736(94)90460-x. [DOI] [PubMed] [Google Scholar]
  21. Middleton S. J., Shorthouse M., Hunter J. O. Increased nitric oxide synthesis in ulcerative colitis. Lancet. 1993 Feb 20;341(8843):465–466. doi: 10.1016/0140-6736(93)90211-x. [DOI] [PubMed] [Google Scholar]
  22. Miles A. M., Owens M. W., Milligan S., Johnson G. G., Fields J. Z., Ing T. S., Kottapalli V., Keshavarzian A., Grisham M. B. Nitric oxide synthase in circulating vs. extravasated polymorphonuclear leukocytes. J Leukoc Biol. 1995 Nov;58(5):616–622. doi: 10.1002/jlb.58.5.616. [DOI] [PubMed] [Google Scholar]
  23. Miller M. J., Sadowska-Krowicka H., Chotinaruemol S., Kakkis J. L., Clark D. A. Amelioration of chronic ileitis by nitric oxide synthase inhibition. J Pharmacol Exp Ther. 1993 Jan;264(1):11–16. [PubMed] [Google Scholar]
  24. Miller M. J., Thompson J. H., Zhang X. J., Sadowska-Krowicka H., Kakkis J. L., Munshi U. K., Sandoval M., Rossi J. L., Eloby-Childress S., Beckman J. S. Role of inducible nitric oxide synthase expression and peroxynitrite formation in guinea pig ileitis. Gastroenterology. 1995 Nov;109(5):1475–1483. doi: 10.1016/0016-5085(95)90633-9. [DOI] [PubMed] [Google Scholar]
  25. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  26. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  27. Nguyen T., Brunson D., Crespi C. L., Penman B. W., Wishnok J. S., Tannenbaum S. R. DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3030–3034. doi: 10.1073/pnas.89.7.3030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nussler A. K., Billiar T. R. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol. 1993 Aug;54(2):171–178. [PubMed] [Google Scholar]
  29. Rachmilewitz D., Stamler J. S., Bachwich D., Karmeli F., Ackerman Z., Podolsky D. K. Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease. Gut. 1995 May;36(5):718–723. doi: 10.1136/gut.36.5.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Riley S. A., Mani V., Goodman M. J., Herd M. E., Dutt S., Turnberg L. A. Comparison of delayed release 5 aminosalicylic acid (mesalazine) and sulphasalazine in the treatment of mild to moderate ulcerative colitis relapse. Gut. 1988 May;29(5):669–674. doi: 10.1136/gut.29.5.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Roediger W. E., Lawson M. J., Radcliffe B. C. Nitrite from inflammatory cells--a cancer risk factor in ulcerative colitis? Dis Colon Rectum. 1990 Dec;33(12):1034–1036. doi: 10.1007/BF02139219. [DOI] [PubMed] [Google Scholar]
  32. Sartor R. B. Cytokines in intestinal inflammation: pathophysiological and clinical considerations. Gastroenterology. 1994 Feb;106(2):533–539. doi: 10.1016/0016-5085(94)90614-9. [DOI] [PubMed] [Google Scholar]
  33. Stuehr D. J., Nathan C. F. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med. 1989 May 1;169(5):1543–1555. doi: 10.1084/jem.169.5.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Szabó C., Salzman A. L., Ischiropoulos H. Endotoxin triggers the expression of an inducible isoform of nitric oxide synthase and the formation of peroxynitrite in the rat aorta in vivo. FEBS Lett. 1995 Apr 24;363(3):235–238. doi: 10.1016/0014-5793(95)00322-z. [DOI] [PubMed] [Google Scholar]
  35. Tepperman B. L., Brown J. F., Whittle B. J. Nitric oxide synthase induction and intestinal epithelial cell viability in rats. Am J Physiol. 1993 Aug;265(2 Pt 1):G214–G218. doi: 10.1152/ajpgi.1993.265.2.G214. [DOI] [PubMed] [Google Scholar]
  36. Thomas E. L., Jefferson M. M., Bennett J. J., Learn D. B. Mutagenic activity of chloramines. Mutat Res. 1987 May;188(1):35–43. doi: 10.1016/0165-1218(87)90112-1. [DOI] [PubMed] [Google Scholar]
  37. Weitzman S. A., Gordon L. I. Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood. 1990 Aug 15;76(4):655–663. [PubMed] [Google Scholar]
  38. Wizemann T. M., Gardner C. R., Laskin J. D., Quinones S., Durham S. K., Goller N. L., Ohnishi S. T., Laskin D. L. Production of nitric oxide and peroxynitrite in the lung during acute endotoxemia. J Leukoc Biol. 1994 Dec;56(6):759–768. doi: 10.1002/jlb.56.6.759. [DOI] [PubMed] [Google Scholar]
  39. Yamada T., Sartor R. B., Marshall S., Specian R. D., Grisham M. B. Mucosal injury and inflammation in a model of chronic granulomatous colitis in rats. Gastroenterology. 1993 Mar;104(3):759–771. doi: 10.1016/0016-5085(93)91011-6. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES