Skip to main content
Gut logoLink to Gut
. 1998 Feb;42(2):220–226. doi: 10.1136/gut.42.2.220

Developmental expression of mucin genes in the human gastrointestinal system

C Reid 1, A Harris 1
PMCID: PMC1727008  PMID: 9536947

Abstract

Background and aims—Mucin glycoproteins play a key role in the normal function of the epithelium lining the gastrointestinal tract. The expression of mucin genes, MUC 3, 4, 5AC, 5B, 6, 7, and 8 in human fetal tissues was examined to establish the localisation and age of onset of expression of each mucin gene during human development. 
Methods—Mucin gene expression was assayed by mRNA in situ hybridisation. 
Results—Expression of MUC3 was detected in the small intestine and colon from 13 weeks gestation onwards and at low levels in the main pancreatic duct at 13 weeks only. MUC4 expression was seen at a low level in the colonic epithelium from 13 weeks of gestation but not elsewhere in the gastrointestinal tract. MUC5AC mRNA was detected in the colon at 17 weeks and at high levels in the stomach at 23 weeks. MUC6 transcripts were evident in the pancreatic ducts from 13 weeks of gestation and at high levels in the stomach at 23 weeks. MUC5B, MUC7, and MUC8 transcripts were not detected. 
Conclusions—Mucin genes are expressed from the early mid-trimester of gestation in the developing human fetal gastrointestinal tract. 



Keywords: mucin; developmental expression; gastrointestinal tract

Full Text

The Full Text of this article is available as a PDF (349.1 KB).

Figure 1 .

Figure 1

Expression of MUC3 mRNA in 13 (A-C) and 17 (D and E) week small intestine and 17 week colon (F-H). A, D, and F show brightfield views of sections hybridised with the MUC3 antisense probe, and B, E, and G show darkfield images of the sections shown in A, D, and F respectively. C and H show darkfield views of sections consecutive to those shown in A and F hybridised with the MUC3 sense negative control probe, and equivalent results were seen with the MUC3 sense negative control for the 17 week small intestine shown in D and E (not shown). The size bar shown in A corresponds to 200 µm in A-C and F-H and 100 µm in D and E.

Figure 2 .

Figure 2

Expression of MUC5AC mRNA in 17 week fetal colon. A shows a brightfield view of a section hybridized with the MUC5AC antisense probe and B shows a darkfield image of the same section. C shows a darkfield view of a consecutive section hybridised with the MUC5AC sense negative control probe. The size bar shown in A corresponds to 200 µm for all panels.

Figure 3 .

Figure 3

Expression of MUC5AC (D-F) and MUC6 (A-C) mRNA in 23 week stomach. D and A show a brightfield view of a section hybridised with the MUC5AC and MUC6 antisense probes respectively and E and B show darkfield images of the same respective sections. F and C show darkfield views of consecutive sections hybridised with the MUC5AC and MUC6 sense negative control probes respectively. The silver grains generated by probe hybridisation to the MUC6 mRNA appear as black dots in the bright field pictures and white dots in the dark field view. The size bar shown in A corresponds to 200 µm for all panels.

Figure 4 .

Figure 4

Expression of MUC6 mRNA in 13 week fetal pancreas. A shows a brightfield view of a pancreas section hybridised with the MUC6 antisense probe, and B shows a darkfield image of the same section. C shows a darkfield view of a consecutive section hybridised with the MUC6 sense negative control probe. The size bar shown in A corresponds to 200 µm for all panels.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Audie J. P., Janin A., Porchet N., Copin M. C., Gosselin B., Aubert J. P. Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. J Histochem Cytochem. 1993 Oct;41(10):1479–1485. doi: 10.1177/41.10.8245407. [DOI] [PubMed] [Google Scholar]
  2. Bobek L. A., Tsai H., Biesbrock A. R., Levine M. J. Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7). J Biol Chem. 1993 Sep 25;268(27):20563–20569. [PubMed] [Google Scholar]
  3. Chambers J. A., Hollingsworth M. A., Trezise A. E., Harris A. Developmental expression of mucin genes MUC1 and MUC2. J Cell Sci. 1994 Feb;107(Pt 2):413–424. doi: 10.1242/jcs.107.2.413. [DOI] [PubMed] [Google Scholar]
  4. Chang S. K., Dohrman A. F., Basbaum C. B., Ho S. B., Tsuda T., Toribara N. W., Gum J. R., Kim Y. S. Localization of mucin (MUC2 and MUC3) messenger RNA and peptide expression in human normal intestine and colon cancer. Gastroenterology. 1994 Jul;107(1):28–36. doi: 10.1016/0016-5085(94)90057-4. [DOI] [PubMed] [Google Scholar]
  5. Crepin M., Porchet N., Aubert J. P., Degand P. Diversity of the peptide moiety of human airway mucins. Biorheology. 1990;27(3-4):471–484. doi: 10.3233/bir-1990-273-426. [DOI] [PubMed] [Google Scholar]
  6. Dufosse J., Porchet N., Audie J. P., Guyonnet Duperat V., Laine A., Van-Seuningen I., Marrakchi S., Degand P., Aubert J. P. Degenerate 87-base-pair tandem repeats create hydrophilic/hydrophobic alternating domains in human mucin peptides mapped to 11p15. Biochem J. 1993 Jul 15;293(Pt 2):329–337. doi: 10.1042/bj2930329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gendler S. J., Lancaster C. A., Taylor-Papadimitriou J., Duhig T., Peat N., Burchell J., Pemberton L., Lalani E. N., Wilson D. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem. 1990 Sep 5;265(25):15286–15293. [PubMed] [Google Scholar]
  8. Gum J. R., Byrd J. C., Hicks J. W., Toribara N. W., Lamport D. T., Kim Y. S. Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism. J Biol Chem. 1989 Apr 15;264(11):6480–6487. [PubMed] [Google Scholar]
  9. Gum J. R., Hicks J. W., Swallow D. M., Lagace R. L., Byrd J. C., Lamport D. T., Siddiki B., Kim Y. S. Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem Biophys Res Commun. 1990 Aug 31;171(1):407–415. doi: 10.1016/0006-291x(90)91408-k. [DOI] [PubMed] [Google Scholar]
  10. Gum J. R., Jr, Hicks J. W., Toribara N. W., Rothe E. M., Lagace R. E., Kim Y. S. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J Biol Chem. 1992 Oct 25;267(30):21375–21383. [PubMed] [Google Scholar]
  11. Ho S. B., Roberton A. M., Shekels L. L., Lyftogt C. T., Niehans G. A., Toribara N. W. Expression cloning of gastric mucin complementary DNA and localization of mucin gene expression. Gastroenterology. 1995 Sep;109(3):735–747. doi: 10.1016/0016-5085(95)90380-1. [DOI] [PubMed] [Google Scholar]
  12. Jany B. H., Gallup M. W., Yan P. S., Gum J. R., Kim Y. S., Basbaum C. B. Human bronchus and intestine express the same mucin gene. J Clin Invest. 1991 Jan;87(1):77–82. doi: 10.1172/JCI115004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim Y. S., Gum J. R., Jr Diversity of mucin genes, structure, function, and expression. Gastroenterology. 1995 Sep;109(3):999–1001. doi: 10.1016/0016-5085(95)90412-3. [DOI] [PubMed] [Google Scholar]
  14. Lan M. S., Batra S. K., Qi W. N., Metzgar R. S., Hollingsworth M. A. Cloning and sequencing of a human pancreatic tumor mucin cDNA. J Biol Chem. 1990 Sep 5;265(25):15294–15299. [PubMed] [Google Scholar]
  15. Porchet N., Nguyen V. C., Dufosse J., Audie J. P., Guyonnet-Duperat V., Gross M. S., Denis C., Degand P., Bernheim A., Aubert J. P. Molecular cloning and chromosomal localization of a novel human tracheo-bronchial mucin cDNA containing tandemly repeated sequences of 48 base pairs. Biochem Biophys Res Commun. 1991 Mar 15;175(2):414–422. doi: 10.1016/0006-291x(91)91580-6. [DOI] [PubMed] [Google Scholar]
  16. Reid C. J., Gould S., Harris A. Developmental expression of mucin genes in the human respiratory tract. Am J Respir Cell Mol Biol. 1997 Nov;17(5):592–598. doi: 10.1165/ajrcmb.17.5.2798. [DOI] [PubMed] [Google Scholar]
  17. Shankar V., Gilmore M. S., Elkins R. C., Sachdev G. P. A novel human airway mucin cDNA encodes a protein with unique tandem-repeat organization. Biochem J. 1994 Jun 1;300(Pt 2):295–298. doi: 10.1042/bj3000295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Toribara N. W., Roberton A. M., Ho S. B., Kuo W. L., Gum E., Hicks J. W., Gum J. R., Jr, Byrd J. C., Siddiki B., Kim Y. S. Human gastric mucin. Identification of a unique species by expression cloning. J Biol Chem. 1993 Mar 15;268(8):5879–5885. [PubMed] [Google Scholar]
  19. Trezise A. E., Chambers J. A., Wardle C. J., Gould S., Harris A. Expression of the cystic fibrosis gene in human foetal tissues. Hum Mol Genet. 1993 Mar;2(3):213–218. doi: 10.1093/hmg/2.3.213. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES