Skip to main content
Gut logoLink to Gut
. 1998 Jul;43(1):93–99. doi: 10.1136/gut.43.1.93

Folate depletion impairs DNA excision repair in the colon of the rat

S Choi 1, Y Kim 1, J Weitzel 1, J Mason 1
PMCID: PMC1727179  PMID: 9771411

Abstract

Background/Aims—Diminished folate status appears to promote colonic carcinogenesis by, as of yet, undefined mechanisms. Impaired DNA repair plays a significant role in the evolution of many colon cancers. Since folate is essential for the de novo synthesis of nucleotides and since folate depletion has previously been associated with excessive DNA strand breaks, it was hypothesised that folate depletion may impair DNA repair. Studies were therefore performed to examine whether folate depletion affects the two major categories of DNA repair. 
Methods—Study 1: eight weanling male Sprague-Dawley rats were fed on diets containing either 0 or 8 mg folate/kg diet with 1% succinylsulphathiazole for four weeks. After viable colonocytes had been harvested, DNA excision repair was evaluated by a single cell gel electrophoresis assay. Study 2: eighteen animals were fed on similar diets for five weeks. Also in study 2, 18 additional rats were fed on the same defined diet without succinylsulphathiazole for 15 weeks. Weekly injections with the procarcinogen, 1,2-dimethylhydrazine (20 mg base/kg), were administered to the latter group of animals. Five microsatellite loci from different chromosomes were investigated for instability in hepatic and colonic DNA. 
Results—In study 1, a significantly retarded rate of DNA excision repair was observed in the folate deficient colonocytes compared with controls (p<0.05). In study 2, there was no evidence of instability at the five microsatellite loci associated with either short or long term folate depletion. 
Conclusions—Folate deficiency impairs DNA excision repair in rat colonic mucosa; a similar degree of deficiency, even when administered in conjunction with a colonic carcinogen, did not produce evidence of a widespread defect in mismatch repair. 



Keywords: folate; colon cancer; DNA repair; single cell gel electrophoresis; microsatellite instability; rat

Full Text

The Full Text of this article is available as a PDF (144.4 KB).

Figure 1 .

Figure 1

Recovery of nuclear size after H2O2 treatment. Results are means (SEM). The recovery of nuclear length after H2O2 damage was significantly delayed in the folate deficient group compared with the folate supplemented group (p = 0.03, repeated measures of analysis). Significant differences between the two groups were also evident at each time point (indicated by different superscript letters, p<0.05, Student's t test). The mean values for nuclear length in the nucleotide precursor supplemented folate deficient group were intermediate between the folate deficient and folate supplemented groups, and there were no significant differences between this group and the other two.

Figure 2 .

Figure 2

Microsatellite loci investigated in this study. (A) AR locus in X chromosome of male rats. A1 and A2 are from control rats, and B1 and B2 are from folate deficient rats. (B) IGHE locus in chromosome 6. C1 and C2 are from control rats, and D1 and D2 are from folate deficient rats. The microsatellite amplification products from the folate deficient rats and the folate replete controls were identical. There was no evidence of microsatellite instability at the five loci used in this study.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaltonen L. A., Peltomäki P., Mecklin J. P., Järvinen H., Jass J. R., Green J. S., Lynch H. T., Watson P., Tallqvist G., Juhola M. Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 1994 Apr 1;54(7):1645–1648. [PubMed] [Google Scholar]
  2. Ames B. N., Shigenaga M. K., Gold L. S. DNA lesions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. Environ Health Perspect. 1993 Dec;101 (Suppl 5):35–44. doi: 10.1289/ehp.93101s535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson D., Yu T. W., Phillips B. J., Schmezer P. The effect of various antioxidants and other modifying agents on oxygen-radical-generated DNA damage in human lymphocytes in the COMET assay. Mutat Res. 1994 May 1;307(1):261–271. doi: 10.1016/0027-5107(94)90300-x. [DOI] [PubMed] [Google Scholar]
  4. Beckman J. S., Weber J. L. Survey of human and rat microsatellites. Genomics. 1992 Apr;12(4):627–631. doi: 10.1016/0888-7543(92)90285-z. [DOI] [PubMed] [Google Scholar]
  5. Blount B. C., Mack M. M., Wehr C. M., MacGregor J. T., Hiatt R. A., Wang G., Wickramasinghe S. N., Everson R. B., Ames B. N. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3290–3295. doi: 10.1073/pnas.94.7.3290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borman L. S., Branda R. F. Nutritional folate deficiency in Chinese hamster ovary cells. I. Characterization of the pleiotropic response and its modulation by nucleic acid precursors. J Cell Physiol. 1989 Aug;140(2):335–343. doi: 10.1002/jcp.1041400220. [DOI] [PubMed] [Google Scholar]
  7. Branch P., Hampson R., Karran P. DNA mismatch binding defects, DNA damage tolerance, and mutator phenotypes in human colorectal carcinoma cell lines. Cancer Res. 1995 Jun 1;55(11):2304–2309. [PubMed] [Google Scholar]
  8. Branda R. F., Blickensderfer D. B. Folate deficiency increases genetic damage caused by alkylating agents and gamma-irradiation in Chinese hamster ovary cells. Cancer Res. 1993 Nov 15;53(22):5401–5408. [PubMed] [Google Scholar]
  9. Chong J. M., Fukayama M., Hayashi Y., Takizawa T., Koike M., Konishi M., Kikuchi-Yanoshita R., Miyaki M. Microsatellite instability in the progression of gastric carcinoma. Cancer Res. 1994 Sep 1;54(17):4595–4597. [PubMed] [Google Scholar]
  10. Clifford A. J., Wilson D. S., Bills N. D. Repletion of folate-depleted rats with an amino acid-based diet supplemented with folic acid. J Nutr. 1989 Dec;119(12):1956–1961. doi: 10.1093/jn/119.12.1956. [DOI] [PubMed] [Google Scholar]
  11. Cravo M. L., Mason J. B., Dayal Y., Hutchinson M., Smith D., Selhub J., Rosenberg I. H. Folate deficiency enhances the development of colonic neoplasia in dimethylhydrazine-treated rats. Cancer Res. 1992 Sep 15;52(18):5002–5006. [PubMed] [Google Scholar]
  12. Cravo M., Fidalgo P., Pereira A. D., Gouveia-Oliveira A., Chaves P., Selhub J., Mason J. B., Mira F. C., Leitao C. N. DNA methylation as an intermediate biomarker in colorectal cancer: modulation by folic acid supplementation. Eur J Cancer Prev. 1994 Nov;3(6):473–479. doi: 10.1097/00008469-199411000-00004. [DOI] [PubMed] [Google Scholar]
  13. Culvenor J. G., Weidemann M. J. Phytohaemagglutinin stimulation of rat thymus lymphocytes glycolysis. Biochim Biophys Acta. 1976 Jul 21;437(2):354–363. doi: 10.1016/0304-4165(76)90005-2. [DOI] [PubMed] [Google Scholar]
  14. Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. doi: 10.1016/0092-8674(90)90186-i. [DOI] [PubMed] [Google Scholar]
  15. Fishel R., Lescoe M. K., Rao M. R., Copeland N. G., Jenkins N. A., Garber J., Kane M., Kolodner R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993 Dec 3;75(5):1027–1038. doi: 10.1016/0092-8674(93)90546-3. [DOI] [PubMed] [Google Scholar]
  16. Gedik C. M., Ewen S. W., Collins A. R. Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells. Int J Radiat Biol. 1992 Sep;62(3):313–320. doi: 10.1080/09553009214552161. [DOI] [PubMed] [Google Scholar]
  17. Giovannucci E., Stampfer M. J., Colditz G. A., Rimm E. B., Trichopoulos D., Rosner B. A., Speizer F. E., Willett W. C. Folate, methionine, and alcohol intake and risk of colorectal adenoma. J Natl Cancer Inst. 1993 Jun 2;85(11):875–884. doi: 10.1093/jnci/85.11.875. [DOI] [PubMed] [Google Scholar]
  18. Hamilton S. R. Molecular genetics of colorectal carcinoma. Cancer. 1992 Sep 1;70(5 Suppl):1216–1221. doi: 10.1002/1097-0142(19920901)70:3+<1216::aid-cncr2820701505>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
  19. Hartmann A., Speit G. Genotoxic effects of chemicals in the single cell gel (SCG) test with human blood cells in relation to the induction of sister-chromatid exchanges (SCE). Mutat Res. 1995 Jan;346(1):49–56. doi: 10.1016/0165-7992(95)90068-3. [DOI] [PubMed] [Google Scholar]
  20. Imlay J. A., Linn S. DNA damage and oxygen radical toxicity. Science. 1988 Jun 3;240(4857):1302–1309. doi: 10.1126/science.3287616. [DOI] [PubMed] [Google Scholar]
  21. Ionov Y., Peinado M. A., Malkhosyan S., Shibata D., Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993 Jun 10;363(6429):558–561. doi: 10.1038/363558a0. [DOI] [PubMed] [Google Scholar]
  22. Jacoby R. F., Marshall D. J., Kailas S., Schlack S., Harms B., Love R. Genetic instability associated with adenoma to carcinoma progression in hereditary nonpolyposis colon cancer. Gastroenterology. 1995 Jul;109(1):73–82. doi: 10.1016/0016-5085(95)90270-8. [DOI] [PubMed] [Google Scholar]
  23. James S. J., Basnakian A. G., Miller B. J. In vitro folate deficiency induces deoxynucleotide pool imbalance, apoptosis, and mutagenesis in Chinese hamster ovary cells. Cancer Res. 1994 Oct 1;54(19):5075–5080. [PubMed] [Google Scholar]
  24. James S. J., Miller B. J., Cross D. R., McGarrity L. J., Morris S. M. The essentiality of folate for the maintenance of deoxynucleotide precursor pools, DNA synthesis, and cell cycle progression in PHA-stimulated lymphocytes. Environ Health Perspect. 1993 Dec;101 (Suppl 5):173–178. doi: 10.1289/ehp.93101s5173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. James S. J., Yin L. Diet-induced DNA damage and altered nucleotide metabolism in lymphocytes from methyl-donor-deficient rats. Carcinogenesis. 1989 Jul;10(7):1209–1214. doi: 10.1093/carcin/10.7.1209. [DOI] [PubMed] [Google Scholar]
  26. Kim H., Jen J., Vogelstein B., Hamilton S. R. Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol. 1994 Jul;145(1):148–156. [PMC free article] [PubMed] [Google Scholar]
  27. Kim Y. I., Christman J. K., Fleet J. C., Cravo M. L., Salomon R. N., Smith D., Ordovas J., Selhub J., Mason J. B. Moderate folate deficiency does not cause global hypomethylation of hepatic and colonic DNA or c-myc-specific hypomethylation of colonic DNA in rats. Am J Clin Nutr. 1995 May;61(5):1083–1090. doi: 10.1093/ajcn/61.4.1083. [DOI] [PubMed] [Google Scholar]
  28. Kim Y. I., Pogribny I. P., Basnakian A. G., Miller J. W., Selhub J., James S. J., Mason J. B. Folate deficiency in rats induces DNA strand breaks and hypomethylation within the p53 tumor suppressor gene. Am J Clin Nutr. 1997 Jan;65(1):46–52. doi: 10.1093/ajcn/65.1.46. [DOI] [PubMed] [Google Scholar]
  29. Kim Y. I., Pogribny I. P., Salomon R. N., Choi S. W., Smith D. E., James S. J., Mason J. B. Exon-specific DNA hypomethylation of the p53 gene of rat colon induced by dimethylhydrazine. Modulation by dietary folate. Am J Pathol. 1996 Oct;149(4):1129–1137. [PMC free article] [PubMed] [Google Scholar]
  30. Kreja L., Selig C., Nothdurft W. Assessment of DNA damage in canine peripheral blood and bone marrow after total body irradiation using the single-cell gel electrophoresis technique. Mutat Res. 1996 Jan 16;359(1):63–70. doi: 10.1016/s0165-1161(96)90010-2. [DOI] [PubMed] [Google Scholar]
  31. Kruszewski M., Green M. H., Lowe J. E., Szumiel I. DNA strand breakage, cytotoxicity and mutagenicity of hydrogen peroxide treatment at 4 degrees C and 37 degrees C in L5178Y sublines. Mutat Res. 1994 Jul 16;308(2):233–241. doi: 10.1016/0027-5107(94)90158-9. [DOI] [PubMed] [Google Scholar]
  32. Libbus B. L., Borman L. S., Ventrone C. H., Branda R. F. Nutritional folate-deficiency in Chinese hamster ovary cells. Chromosomal abnormalities associated with perturbations in nucleic acid precursors. Cancer Genet Cytogenet. 1990 Jun;46(2):231–242. doi: 10.1016/0165-4608(90)90108-m. [DOI] [PubMed] [Google Scholar]
  33. Lin J. J., Sancar A. A new mechanism for repairing oxidative damage to DNA: (A)BC excinuclease removes AP sites and thymine glycols from DNA. Biochemistry. 1989 Oct 3;28(20):7979–7984. doi: 10.1021/bi00446a002. [DOI] [PubMed] [Google Scholar]
  34. Maihara T., Andoh Y., Yokoi N., Kuramoto T., Serikawa T. Fifty-six new microsatellite markers in the rat genetic linkage map. Transplant Proc. 1995 Apr;27(2):1502–1504. [PubMed] [Google Scholar]
  35. Mao L., Lee D. J., Tockman M. S., Erozan Y. S., Askin F., Sidransky D. Microsatellite alterations as clonal markers for the detection of human cancer. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9871–9875. doi: 10.1073/pnas.91.21.9871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Martin M. S., Martin F., Michiels R., Bastien H., Justrabo E., Bordes M., Viry B. An experimental model for cancer of the colon and rectum. Intestinal carcinoma induced in the rat 1,2-dimethylhydrazine. Digestion. 1973;8(1):22–34. doi: 10.1159/000197298. [DOI] [PubMed] [Google Scholar]
  37. Mason J. B., Levesque T. Folate: effects on carcinogenesis and the potential for cancer chemoprevention. Oncology (Williston Park) 1996 Nov;10(11):1727-36, 1742-3; discussion 1743-4. [PubMed] [Google Scholar]
  38. Mellon I., Champe G. N. Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotide-excision repair of the lactose operon in Escherichia coli. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1292–1297. doi: 10.1073/pnas.93.3.1292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Mellon I., Rajpal D. K., Koi M., Boland C. R., Champe G. N. Transcription-coupled repair deficiency and mutations in human mismatch repair genes. Science. 1996 Apr 26;272(5261):557–560. doi: 10.1126/science.272.5261.557. [DOI] [PubMed] [Google Scholar]
  40. Okamoto M., Ohtsu H., Miyaki M., Yonekawa H. No allelic loss at the p53 locus in 1,2-dimethylhydrazine-induced mouse colon tumours: PCR-SSCP analysis with sequence-tagged microsatellite site primers. Carcinogenesis. 1993 Jul;14(7):1483–1486. doi: 10.1093/carcin/14.7.1483. [DOI] [PubMed] [Google Scholar]
  41. Parsons R., Li G. M., Longley M., Modrich P., Liu B., Berk T., Hamilton S. R., Kinzler K. W., Vogelstein B. Mismatch repair deficiency in phenotypically normal human cells. Science. 1995 May 5;268(5211):738–740. doi: 10.1126/science.7632227. [DOI] [PubMed] [Google Scholar]
  42. Paspatis G. A., Karamanolis D. G. Folate supplementation and adenomatous colonic polyps. Dis Colon Rectum. 1994 Dec;37(12):1340–1341. doi: 10.1007/BF02257810. [DOI] [PubMed] [Google Scholar]
  43. Perret V., Lev R., Pigman W. Simple method for the preparation of single cell suspensions from normal and tumorous rat colonic mucosa. Gut. 1977 May;18(5):382–385. doi: 10.1136/gut.18.5.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Reeves P. G., Nielsen F. H., Fahey G. C., Jr AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993 Nov;123(11):1939–1951. doi: 10.1093/jn/123.11.1939. [DOI] [PubMed] [Google Scholar]
  45. Rogers A. E., Nauss K. M. Rodent models for carcinoma of the colon. Dig Dis Sci. 1985 Dec;30(12 Suppl):87S–102S. doi: 10.1007/BF01296986. [DOI] [PubMed] [Google Scholar]
  46. Rogers K. J., Pegg A. E. Formation of O6-methylguanine by alkylation of rat liver, colon, and kidney DNA following administration of 1,2-dimethylhydrazine. Cancer Res. 1977 Nov;37(11):4082–4087. [PubMed] [Google Scholar]
  47. Sarker A. H., Watanabe S., Seki S., Akiyama T., Okada S. Oxygen radical-induced single-strand DNA breaks and repair of the damage in a cell-free system. Mutat Res. 1995 Sep;337(2):85–95. doi: 10.1016/0921-8777(95)00012-9. [DOI] [PubMed] [Google Scholar]
  48. Schlegel J., Stumm G., Scherthan H., Bocker T., Zirngibl H., Rüschoff J., Hofstädter F. Comparative genomic in situ hybridization of colon carcinomas with replication error. Cancer Res. 1995 Dec 15;55(24):6002–6005. [PubMed] [Google Scholar]
  49. Serikawa T., Kuramoto T., Hilbert P., Mori M., Yamada J., Dubay C. J., Lindpainter K., Ganten D., Guénet J. L., Lathrop G. M. Rat gene mapping using PCR-analyzed microsatellites. Genetics. 1992 Jul;131(3):701–721. doi: 10.1093/genetics/131.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Shane B., Stokstad E. L. Vitamin B12-folate interrelationships. Annu Rev Nutr. 1985;5:115–141. doi: 10.1146/annurev.nu.05.070185.000555. [DOI] [PubMed] [Google Scholar]
  51. Shannon J., White E., Shattuck A. L., Potter J. D. Relationship of food groups and water intake to colon cancer risk. Cancer Epidemiol Biomarkers Prev. 1996 Jul;5(7):495–502. [PubMed] [Google Scholar]
  52. Singh N. P., Danner D. B., Tice R. R., Brant L., Schneider E. L. DNA damage and repair with age in individual human lymphocytes. Mutat Res. 1990 May-Jul;237(3-4):123–130. doi: 10.1016/0921-8734(90)90018-m. [DOI] [PubMed] [Google Scholar]
  53. Singh N. P., McCoy M. T., Tice R. R., Schneider E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988 Mar;175(1):184–191. doi: 10.1016/0014-4827(88)90265-0. [DOI] [PubMed] [Google Scholar]
  54. Speit G., Hartmann A. The contribution of excision repair to the DNA effects seen in the alkaline single cell gel test (comet assay). Mutagenesis. 1995 Nov;10(6):555–559. doi: 10.1093/mutage/10.6.555. [DOI] [PubMed] [Google Scholar]
  55. Suzuki H., Harpaz N., Tarmin L., Yin J., Jiang H. Y., Bell J. D., Hontanosas M., Groisman G. M., Abraham J. M., Meltzer S. J. Microsatellite instability in ulcerative colitis-associated colorectal dysplasias and cancers. Cancer Res. 1994 Sep 15;54(18):4841–4844. [PubMed] [Google Scholar]
  56. Thibodeau S. N., Bren G., Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993 May 7;260(5109):816–819. doi: 10.1126/science.8484122. [DOI] [PubMed] [Google Scholar]
  57. Vijayalaxmi, Tice R. R., Strauss G. H. Assessment of radiation-induced DNA damage in human blood lymphocytes using the single-cell gel electrophoresis technique. Mutat Res. 1992 Jun;271(3):243–252. doi: 10.1016/0165-1161(92)90019-i. [DOI] [PubMed] [Google Scholar]
  58. Walzem R. L., Clifford A. J. Folate deficiency in rats fed diets containing free amino acids or intact proteins. J Nutr. 1988 Sep;118(9):1089–1096. doi: 10.1093/jn/118.9.1089. [DOI] [PubMed] [Google Scholar]
  59. Wilson S. D., Horne D. W. Use of glycerol-cryoprotected Lactobacillus casei for microbiological assay of folic acid. Clin Chem. 1982 May;28(5):1198–1200. [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES