Skip to main content
Gut logoLink to Gut
. 2000 Mar;46(3):367–369. doi: 10.1136/gut.46.3.367

Defective hMSH2/hMLH1 protein expression is seen infrequently in ulcerative colitis associated colorectal cancers

L Cawkwell 1, F Sutherland 1, H Murgatroyd 1, P Jarvis 1, S Gray 1, D Cross 1, N Shepherd 1, D Day 1, P Quirke 1
PMCID: PMC1727867  PMID: 10673298

Abstract

BACKGROUND—Ulcerative colitis is associated with an increased risk of colorectal cancer above that of the normal population. The relative risk correlates with the extent and duration of the disease but the genetic basis of ulcerative colitis associated cancer risk is not known.
AIMS—To assess the prevalence of microsatellite instability and mismatch repair gene abnormalities in ulcerative colitis associated colorectal cancer.
PATIENTS—Forty six patients with colorectal cancer, with a previous histological diagnosis of ulcerative colitis.
METHODS—The frequency of microsatellite instability and/or immunohistochemical expression of hMSH2 and hMLH1 was assessed. Thirty three cases were investigated using both approaches.
RESULTS—Although 6/41 (14.6%) cases showed microsatellite instability at one or more markers, only one case (2.4%) exhibited high level instability (at least two markers affected). Of 38 cases which were assessed using antibodies against hMSH2 and hMLH1, only one case (2.6%) showed loss of expression. This case, which showed loss of hMSH2 expression, was the same case which exhibited high level microsatellite instability. The 33 cases which were investigated using both approaches showed that loss of expression of either hMSH2 or hMLH1 was not seen in any case which exhibited microsatellite instability in no more than one marker.
CONCLUSIONS—This study suggests that both high level microsatellite instability and loss of expression of hMSH2/hMLH1 are infrequent events in ulcerative colitis associated colorectal cancers. Low level microsatellite instability was not associated with loss of expression of either hMSH2 or hMLH1.


Keywords: ulcerative colitis; colorectal cancer; microsatellite instability; mismatch repair; inflammatory bowel disease

Full Text

The Full Text of this article is available as a PDF (80.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaltonen L. A., Peltomäki P., Leach F. S., Sistonen P., Pylkkänen L., Mecklin J. P., Järvinen H., Powell S. M., Jen J., Hamilton S. R. Clues to the pathogenesis of familial colorectal cancer. Science. 1993 May 7;260(5109):812–816. doi: 10.1126/science.8484121. [DOI] [PubMed] [Google Scholar]
  2. Brentnall T. A., Chen R., Lee J. G., Kimmey M. B., Bronner M. P., Haggitt R. C., Kowdley K. V., Hecker L. M., Byrd D. R. Microsatellite instability and K-ras mutations associated with pancreatic adenocarcinoma and pancreatitis. Cancer Res. 1995 Oct 1;55(19):4264–4267. [PubMed] [Google Scholar]
  3. Brentnall T. A., Crispin D. A., Bronner M. P., Cherian S. P., Hueffed M., Rabinovitch P. S., Rubin C. E., Haggitt R. C., Boland C. R. Microsatellite instability in nonneoplastic mucosa from patients with chronic ulcerative colitis. Cancer Res. 1996 Mar 15;56(6):1237–1240. [PubMed] [Google Scholar]
  4. Brentnall T. A., Rubin C. E., Crispin D. A., Stevens A., Batchelor R. H., Haggitt R. C., Bronner M. P., Evans J. P., McCahill L. E., Bilir N. A germline substitution in the human MSH2 gene is associated with high-grade dysplasia and cancer in ulcerative colitis. Gastroenterology. 1995 Jul;109(1):151–155. doi: 10.1016/0016-5085(95)90280-5. [DOI] [PubMed] [Google Scholar]
  5. Bubb V. J., Curtis L. J., Cunningham C., Dunlop M. G., Carothers A. D., Morris R. G., White S., Bird C. C., Wyllie A. H. Microsatellite instability and the role of hMSH2 in sporadic colorectalcancer. Oncogene. 1996 Jun 20;12(12):2641–2649. [PubMed] [Google Scholar]
  6. Cawkwell L., Gray S., Murgatroyd H., Sutherland F., Haine L., Longfellow M., O'Loughlin S., Cross D., Kronborg O., Fenger C. Choice of management strategy for colorectal cancer based on a diagnostic immunohistochemical test for defective mismatch repair. Gut. 1999 Sep;45(3):409–415. doi: 10.1136/gut.45.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cawkwell L., Lewis F. A., Quirke P. Frequency of allele loss of DCC, p53, RBI, WT1, NF1, NM23 and APC/MCC in colorectal cancer assayed by fluorescent multiplex polymerase chain reaction. Br J Cancer. 1994 Nov;70(5):813–818. doi: 10.1038/bjc.1994.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cawkwell L., Li D., Lewis F. A., Martin I., Dixon M. F., Quirke P. Microsatellite instability in colorectal cancer: improved assessment using fluorescent polymerase chain reaction. Gastroenterology. 1995 Aug;109(2):465–471. doi: 10.1016/0016-5085(95)90334-8. [DOI] [PubMed] [Google Scholar]
  9. Cravo M. L., Albuquerque C. M., Salazar de Sousa L., Glória L. M., Chaves P., Dias Pereira A., Nobre Leitão C., Quina M. G., Costa Mira F. Microsatellite instability in non-neoplastic mucosa of patients with ulcerative colitis: effect of folate supplementation. Am J Gastroenterol. 1998 Nov;93(11):2060–2064. doi: 10.1111/j.1572-0241.1998.00592.x. [DOI] [PubMed] [Google Scholar]
  10. Ekbom A., Helmick C., Zack M., Adami H. O. Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med. 1990 Nov 1;323(18):1228–1233. doi: 10.1056/NEJM199011013231802. [DOI] [PubMed] [Google Scholar]
  11. Gillen C. D., Walmsley R. S., Prior P., Andrews H. A., Allan R. N. Ulcerative colitis and Crohn's disease: a comparison of the colorectal cancer risk in extensive colitis. Gut. 1994 Nov;35(11):1590–1592. doi: 10.1136/gut.35.11.1590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Herman J. G., Umar A., Polyak K., Graff J. R., Ahuja N., Issa J. P., Markowitz S., Willson J. K., Hamilton S. R., Kinzler K. W. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6870–6875. doi: 10.1073/pnas.95.12.6870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kane M. F., Loda M., Gaida G. M., Lipman J., Mishra R., Goldman H., Jessup J. M., Kolodner R. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997 Mar 1;57(5):808–811. [PubMed] [Google Scholar]
  14. Kern S. E., Redston M., Seymour A. B., Caldas C., Powell S. M., Kornacki S., Kinzler K. W. Molecular genetic profiles of colitis-associated neoplasms. Gastroenterology. 1994 Aug;107(2):420–428. doi: 10.1016/0016-5085(94)90167-8. [DOI] [PubMed] [Google Scholar]
  15. Liu B., Parsons R., Papadopoulos N., Nicolaides N. C., Lynch H. T., Watson P., Jass J. R., Dunlop M., Wyllie A., Peltomäki P. Analysis of mismatch repair genes in hereditary non-polyposis colorectal cancer patients. Nat Med. 1996 Feb;2(2):169–174. doi: 10.1038/nm0296-169. [DOI] [PubMed] [Google Scholar]
  16. Lothe R. A., Peltomäki P., Meling G. I., Aaltonen L. A., Nyström-Lahti M., Pylkkänen L., Heimdal K., Andersen T. I., Møller P., Rognum T. O. Genomic instability in colorectal cancer: relationship to clinicopathological variables and family history. Cancer Res. 1993 Dec 15;53(24):5849–5852. [PubMed] [Google Scholar]
  17. Mee A. P., Denton J., Hoyland J. A., Davies M., Mawer E. B. Quantification of vitamin D receptor mRNA in tissue sections demonstrates the relative limitations of in situ-reverse transcriptase-polymerase chain reaction. J Pathol. 1997 May;182(1):22–28. doi: 10.1002/(SICI)1096-9896(199705)182:1<22::AID-PATH809>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  18. Mellemkjaer L., Olsen J. H., Frisch M., Johansen C., Gridley G., McLaughlin J. K. Cancer in patients with ulcerative colitis. Int J Cancer. 1995 Jan 27;60(3):330–333. doi: 10.1002/ijc.2910600309. [DOI] [PubMed] [Google Scholar]
  19. Pokorny R. M., Hofmeister A., Galandiuk S., Dietz A. B., Cohen N. D., Neibergs H. L. Crohn's disease and ulcerative colitis are associated with the DNA repair gene MLH1. Ann Surg. 1997 Jun;225(6):718–725. doi: 10.1097/00000658-199706000-00009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spirio L., Nelson L., Ward K., Burt R., White R., Leppert M. A CA-repeat polymorphism close to the adenomatous polyposis coli (APC) gene offers improved diagnostic testing for familial APC. Am J Hum Genet. 1993 Feb;52(2):286–296. [PMC free article] [PubMed] [Google Scholar]
  21. Suzuki H., Harpaz N., Tarmin L., Yin J., Jiang H. Y., Bell J. D., Hontanosas M., Groisman G. M., Abraham J. M., Meltzer S. J. Microsatellite instability in ulcerative colitis-associated colorectal dysplasias and cancers. Cancer Res. 1994 Sep 15;54(18):4841–4844. [PubMed] [Google Scholar]
  22. Thibodeau S. N., Bren G., Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993 May 7;260(5109):816–819. doi: 10.1126/science.8484122. [DOI] [PubMed] [Google Scholar]
  23. Thibodeau S. N., French A. J., Cunningham J. M., Tester D., Burgart L. J., Roche P. C., McDonnell S. K., Schaid D. J., Vockley C. W., Michels V. V. Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1. Cancer Res. 1998 Apr 15;58(8):1713–1718. [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES