Skip to main content
Gut logoLink to Gut
. 2000 Apr;46(4):468–473. doi: 10.1136/gut.46.4.468

Influence of sumatriptan on gastric fundus tone and on the perception of gastric distension in man

J Tack 1, B Coulie 1, A Wilmer 1, A Andrioli 1, J Janssens 1
PMCID: PMC1727890  PMID: 10716674

Abstract

BACKGROUND—In animals, activation of 5-HT1 like receptors causes a relaxation of the gastric fundus through the activation of intrinsic inhibitory neurones.
AIMS—To investigate the effect of sumatriptan, an agonist at enteric neuronal 5-HT1 receptors, on fasting fundus tone and sensitivity to gastric distension in man.
METHODS—A gastric barostat was used to study the effect of placebo and sumatriptan, 6 mg subcutaneously, on basal fundic tone in healthy subjects. In addition, stepwise isobaric and isovolumetric gastric distensions were performed and perception was measured before and after the administration of placebo and sumatriptan.
RESULTS—Placebo had no significant effects on gastric tone and on perception. Sumatriptan induced an immediate relaxation of the gastric fundus, reflected by an intragastric volume increase of 209 (39) ml (p<0.0005). After sumatriptan, intragastric pressures at the thresholds for perception or discomfort were not significantly altered. However, the intragastric volumes and the corresponding calculated wall tensions at perception and discomfort thresholds were significantly increased.
CONCLUSIONS—Administration of the 5-HT1 receptor agonist sumatriptan induces a relaxation of the gastric fundus in man, allowing larger intragastric volumes before thresholds for perception or discomfort are reached. The effects of sumatriptan on the gastric fundus may have therapeutic potential in the treatment of patients with functional dyspepsia.


Keywords: sumatriptan; 5-HT1 receptors; gastric barostat; visceral sensitivity; enteric nervous system.

Full Text

The Full Text of this article is available as a PDF (147.5 KB).

Figure 1  .

Figure 1  

Representative tracing of intragastric volume, measured by a barostat, before and after administration of sumatriptan 6 mg subcutaneously at time 0. 

Figure 2  .

Figure 2  

Mean intragastric volume (n=11) at five minute intervals as measured with the barostat, before and after administration of sumatriptan 6 mg subcutaneously at time 0. 

Figure 3  .

Figure 3  

Pressure-volume relation obtained by gradually increasing isobaric gastric distensions before and after sumatriptan 6 mg subcutaneously (n=13). Linear model fitting revealed that sumatriptan causes a shift of the pressure-volume curve to significantly higher volumes (p<0.05). MDP, minimal distending pressure.

Figure 4  .

Figure 4  

(A) Corresponding mean perception scores for gradually increasing isobaric distentions before and after sumatriptan 6 mg subcutaneously (n=13). (B) Corresponding mean perception scores for gradually increasing isovolumetric distensions before and after sumatriptan 6 mg subcutaneously (n=7). MDP, minimal distending pressure.

Figure 5  .

Figure 5  

Number of subjects that reported first perception at a given distending volume before and after sumatriptan 6 mg subcutaneously, and number of subjects that reported discomfort at a given distending volume before and after sumatriptan 6 mg subcutaneously (n=7). Sumatriptan induced a significant shift of the volume-perception curve and of the volume-discomfort curve towards higher volumes (p<0.005; logistic regression).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azpiroz F., Malagelada J. R. Importance of vagal input in maintaining gastric tone in the dog. J Physiol. 1987 Mar;384:511–524. doi: 10.1113/jphysiol.1987.sp016467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Azpiroz F., Malagelada J. R. Vagally mediated gastric relaxation induced by intestinal nutrients in the dog. Am J Physiol. 1986 Dec;251(6 Pt 1):G727–G735. doi: 10.1152/ajpgi.1986.251.6.G727. [DOI] [PubMed] [Google Scholar]
  3. Bradette M., Pare P., Douville P., Morin A. Visceral perception in health and functional dyspepsia. Crossover study of gastric distension with placebo and domperidone. Dig Dis Sci. 1991 Jan;36(1):52–58. doi: 10.1007/BF01300087. [DOI] [PubMed] [Google Scholar]
  4. Bülbring E., Gershon M. D. 5-hydroxytryptamine participation in the vagal inhibitory innervation of the stomach. J Physiol. 1967 Oct;192(3):823–846. doi: 10.1113/jphysiol.1967.sp008334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coffin B., Azpiroz F., Guarner F., Malagelada J. R. Selective gastric hypersensitivity and reflex hyporeactivity in functional dyspepsia. Gastroenterology. 1994 Nov;107(5):1345–1351. doi: 10.1016/0016-5085(94)90536-3. [DOI] [PubMed] [Google Scholar]
  6. Coulie B., Tack J., Bouillon R., Peeters T., Janssens J. 5-Hydroxytryptamine-1 receptor activation inhibits endocrine pancreatic secretion in humans. Am J Physiol. 1998 Feb;274(2 Pt 1):E317–E320. doi: 10.1152/ajpendo.1998.274.2.E317. [DOI] [PubMed] [Google Scholar]
  7. Coulie B., Tack J., Sifrim D., Andrioli A., Janssens J. Role of nitric oxide in fasting gastric fundus tone and in 5-HT1 receptor-mediated relaxation of gastric fundus. Am J Physiol. 1999 Feb;276(2 Pt 1):G373–G377. doi: 10.1152/ajpgi.1999.276.2.G373. [DOI] [PubMed] [Google Scholar]
  8. Dechant K. L., Clissold S. P. Sumatriptan. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in the acute treatment of migraine and cluster headache. Drugs. 1992 May;43(5):776–798. doi: 10.2165/00003495-199243050-00010. [DOI] [PubMed] [Google Scholar]
  9. Desai K. M., Sessa W. C., Vane J. R. Involvement of nitric oxide in the reflex relaxation of the stomach to accommodate food or fluid. Nature. 1991 Jun 6;351(6326):477–479. doi: 10.1038/351477a0. [DOI] [PubMed] [Google Scholar]
  10. Distrutti E., Azpiroz F., Soldevilla A., Malagelada J. R. Gastric wall tension determines perception of gastric distention. Gastroenterology. 1999 May;116(5):1035–1042. doi: 10.1016/s0016-5085(99)70006-5. [DOI] [PubMed] [Google Scholar]
  11. Gregersen H., Kassab G. Biomechanics of the gastrointestinal tract. Neurogastroenterol Motil. 1996 Dec;8(4):277–297. doi: 10.1111/j.1365-2982.1996.tb00267.x. [DOI] [PubMed] [Google Scholar]
  12. Hoyer D., Clarke D. E., Fozard J. R., Hartig P. R., Martin G. R., Mylecharane E. J., Saxena P. R., Humphrey P. P. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev. 1994 Jun;46(2):157–203. [PubMed] [Google Scholar]
  13. Mawe G. M., Branchek T. A., Gershon M. D. Blockade of 5-HT-mediated enteric slow EPSPs by BRL 24924: gastrokinetic effects. Am J Physiol. 1989 Sep;257(3 Pt 1):G386–G396. doi: 10.1152/ajpgi.1989.257.3.G386. [DOI] [PubMed] [Google Scholar]
  14. Mayer E. A., Gebhart G. F. Basic and clinical aspects of visceral hyperalgesia. Gastroenterology. 1994 Jul;107(1):271–293. doi: 10.1016/0016-5085(94)90086-8. [DOI] [PubMed] [Google Scholar]
  15. Mearin F., Cucala M., Azpiroz F., Malagelada J. R. The origin of symptoms on the brain-gut axis in functional dyspepsia. Gastroenterology. 1991 Oct;101(4):999–1006. doi: 10.1016/0016-5085(91)90726-2. [DOI] [PubMed] [Google Scholar]
  16. Meulemans A. L., Helsen L. F., Schuurkes J. A. The role of nitric oxide (NO) in 5-HT-induced relaxations of the guinea-pig stomach. Naunyn Schmiedebergs Arch Pharmacol. 1993 Oct;348(4):424–430. doi: 10.1007/BF00171343. [DOI] [PubMed] [Google Scholar]
  17. Michel K., Sann H., Schaaf C., Schemann M. Subpopulations of gastric myenteric neurons are differentially activated via distinct serotonin receptors: projection, neurochemical coding, and functional implications. J Neurosci. 1997 Oct 15;17(20):8009–8017. doi: 10.1523/JNEUROSCI.17-20-08009.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nemeth P. R., Ort C. A., Zafirov D. H., Wood J. D. Interactions between serotonin and cisapride on myenteric neurons. Eur J Pharmacol. 1985 Jan 15;108(1):77–83. doi: 10.1016/0014-2999(85)90285-7. [DOI] [PubMed] [Google Scholar]
  19. Notivol R., Coffin B., Azpiroz F., Mearin F., Serra J., Malagelada J. R. Gastric tone determines the sensitivity of the stomach to distention. Gastroenterology. 1995 Feb;108(2):330–336. doi: 10.1016/0016-5085(95)90057-8. [DOI] [PubMed] [Google Scholar]
  20. Sleight A. J., Cervenka A., Peroutka S. J. In vivo effects of sumatriptan (GR 43175) on extracellular levels of 5-HT in the guinea pig. Neuropharmacology. 1990 Jun;29(6):511–513. doi: 10.1016/0028-3908(90)90061-u. [DOI] [PubMed] [Google Scholar]
  21. Tack J. F., Janssens J., Vantrappen G., Wood J. D. Actions of 5-hydroxytryptamine on myenteric neurons in guinea pig gastric antrum. Am J Physiol. 1992 Dec;263(6 Pt 1):G838–G846. doi: 10.1152/ajpgi.1992.263.6.G838. [DOI] [PubMed] [Google Scholar]
  22. Tack J., Piessevaux H., Coulie B., Caenepeel P., Janssens J. Role of impaired gastric accommodation to a meal in functional dyspepsia. Gastroenterology. 1998 Dec;115(6):1346–1352. doi: 10.1016/s0016-5085(98)70012-5. [DOI] [PubMed] [Google Scholar]
  23. Troncon L. E., Thompson D. G., Ahluwalia N. K., Barlow J., Heggie L. Relations between upper abdominal symptoms and gastric distension abnormalities in dysmotility like functional dyspepsia and after vagotomy. Gut. 1995 Jul;37(1):17–22. doi: 10.1136/gut.37.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zerbib F., Bruley des Varannes S., Oriola R. C., McDonald J., Isal J. P., Galmiche J. P. Alosetron does not affect the visceral perception of gastric distension in healthy subjects. Aliment Pharmacol Ther. 1994 Aug;8(4):403–407. doi: 10.1111/j.1365-2036.1994.tb00307.x. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES