Skip to main content
Gut logoLink to Gut
. 2000 Nov;47(5):735–739. doi: 10.1136/gut.47.5.735

Unsolved mysteries of intestinal M cells

C NICOLETTI 1
PMCID: PMC1728097  PMID: 11034595

Full Text

The Full Text of this article is available as a PDF (131.8 KB).

Figure 1  .

Figure 1  

In Peyer's patches, the lymphoid tissue (LT) is separated from the intestinal lumen (IL) by the follicle associated epithelium (FAE) (A). The cells forming the FAE originate in the closely associated crypts (C) and migrate upwards to the apical region of the dome. Lymphoid follicles are embedded within villi (V). Part of the FAE is indicated in the box (arrowhead) and enlarged (B) to show a typical M cell (M) with adjacent enterocytes (E). The basal membrane of the M cells deeply invaginates forming cytoplasmic pockets (P) harbouring lymphoid cells migrating into them from the lymphoid tissue. M cells also possess basal processes that deeply protrude into the lymphoid tissue (asterisks) where they make contact with cells of the immune system. Enterobacteria (eb) and other antigens adhere to the apical area of the M cells and are subsequently internalised and transported to the mucosal immune system. M cells are also a migration route for lymphocytes moving into the intestinal lumen. The function of these intraluminal cells, the number of which markedly increases after bacterial challenge, remains unknown.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan C. H., Mendrick D. L., Trier J. S. Rat intestinal M cells contain acidic endosomal-lysosomal compartments and express class II major histocompatibility complex determinants. Gastroenterology. 1993 Mar;104(3):698–708. doi: 10.1016/0016-5085(93)91004-2. [DOI] [PubMed] [Google Scholar]
  2. Allan C. H., Trier J. S. Structure and permeability differ in subepithelial villus and Peyer's patch follicle capillaries. Gastroenterology. 1991 May;100(5 Pt 1):1172–1179. [PubMed] [Google Scholar]
  3. Bhalla D. K., Owen R. L. Cell renewal and migration in lymphoid follicles of Peyer's patches and cecum--an autoradiographic study in mice. Gastroenterology. 1982 Feb;82(2):232–242. [PubMed] [Google Scholar]
  4. Bjarnason I., MacPherson A., Hollander D. Intestinal permeability: an overview. Gastroenterology. 1995 May;108(5):1566–1581. doi: 10.1016/0016-5085(95)90708-4. [DOI] [PubMed] [Google Scholar]
  5. Bockman D. E., Cooper M. D. Pinocytosis by epithelium associated with lymphoid follicles in the bursa of Fabricius, appendix, and Peyer's patches. An electron microscopic study. Am J Anat. 1973 Apr;136(4):455–477. doi: 10.1002/aja.1001360406. [DOI] [PubMed] [Google Scholar]
  6. Bockman D. E. Functional histology of appendix. Arch Histol Jpn. 1983 Jun;46(3):271–292. doi: 10.1679/aohc.46.271. [DOI] [PubMed] [Google Scholar]
  7. Borghesi C., Regoli M., Bertelli E., Nicoletti C. Modifications of the follicle-associated epithelium by short-term exposure to a non-intestinal bacterium. J Pathol. 1996 Nov;180(3):326–332. doi: 10.1002/(SICI)1096-9896(199611)180:3<326::AID-PATH656>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  8. Brandtzaeg P., Baekkevold E. S., Farstad I. N., Jahnsen F. L., Johansen F. E., Nilsen E. M., Yamanaka T. Regional specialization in the mucosal immune system: what happens in the microcompartments? Immunol Today. 1999 Mar;20(3):141–151. doi: 10.1016/s0167-5699(98)01413-3. [DOI] [PubMed] [Google Scholar]
  9. Bye W. A., Allan C. H., Trier J. S. Structure, distribution, and origin of M cells in Peyer's patches of mouse ileum. Gastroenterology. 1984 May;86(5 Pt 1):789–801. [PubMed] [Google Scholar]
  10. Clark M. A., Jepson M. A., Simmons N. L., Booth T. A., Hirst B. H. Differential expression of lectin-binding sites defines mouse intestinal M-cells. J Histochem Cytochem. 1993 Nov;41(11):1679–1687. doi: 10.1177/41.11.7691933. [DOI] [PubMed] [Google Scholar]
  11. Clark M. A., Jepson M. A., Simmons N. L., Hirst B. H. Differential surface characteristics of M cells from mouse intestinal Peyer's and caecal patches. Histochem J. 1994 Mar;26(3):271–280. [PubMed] [Google Scholar]
  12. Costa de Beauregard M. A., Pringault E., Robine S., Louvard D. Suppression of villin expression by antisense RNA impairs brush border assembly in polarized epithelial intestinal cells. EMBO J. 1995 Feb 1;14(3):409–421. doi: 10.1002/j.1460-2075.1995.tb07017.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Debard N., Sierro F., Kraehenbuhl J. P. Development of Peyer's patches, follicle-associated epithelium and M cell: lessons from immunodeficient and knockout mice. Semin Immunol. 1999 Jun;11(3):183–191. doi: 10.1006/smim.1999.0174. [DOI] [PubMed] [Google Scholar]
  14. Drubin D. G., Nelson W. J. Origins of cell polarity. Cell. 1996 Feb 9;84(3):335–344. doi: 10.1016/s0092-8674(00)81278-7. [DOI] [PubMed] [Google Scholar]
  15. Ermak T. H., Owen R. L. Differential distribution of lymphocytes and accessory cells in mouse Peyer's patches. Anat Rec. 1986 Jun;215(2):144–152. doi: 10.1002/ar.1092150208. [DOI] [PubMed] [Google Scholar]
  16. Ermak T. H., Steger H. J., Pappo J. Phenotypically distinct subpopulations of T cells in domes and M-cell pockets of rabbit gut-associated lymphoid tissues. Immunology. 1990 Dec;71(4):530–537. [PMC free article] [PubMed] [Google Scholar]
  17. Ermak T. H., Steger H. J., Strober S., Owen R. L. M cells and granular mononuclear cells in Peyer's patch domes of mice depleted of their lymphocytes by total lymphoid irradiation. Am J Pathol. 1989 Mar;134(3):529–537. [PMC free article] [PubMed] [Google Scholar]
  18. Falk P., Roth K. A., Gordon J. I. Lectins are sensitive tools for defining the differentiation programs of mouse gut epithelial cell lineages. Am J Physiol. 1994 Jun;266(6 Pt 1):G987–1003. doi: 10.1152/ajpgi.1994.266.6.G987. [DOI] [PubMed] [Google Scholar]
  19. Finzi G., Cornaggia M., Capella C., Fiocca R., Bosi F., Solcia E., Samloff I. M. Cathepsin E in follicle associated epithelium of intestine and tonsils: localization to M cells and possible role in antigen processing. Histochemistry. 1993 Mar;99(3):201–211. doi: 10.1007/BF00269138. [DOI] [PubMed] [Google Scholar]
  20. Foster N., Clark M. A., Jepson M. A., Hirst B. H. Ulex europaeus 1 lectin targets microspheres to mouse Peyer's patch M-cells in vivo. Vaccine. 1998 Mar;16(5):536–541. doi: 10.1016/s0264-410x(97)00222-3. [DOI] [PubMed] [Google Scholar]
  21. Frey A., Giannasca K. T., Weltzin R., Giannasca P. J., Reggio H., Lencer W. I., Neutra M. R. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med. 1996 Sep 1;184(3):1045–1059. doi: 10.1084/jem.184.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fujimura Y. Functional morphology of microfold cells (M cells) in Peyer's patches--phagocytosis and transport of BCG by M cells into rabbit Peyer's patches. Gastroenterol Jpn. 1986 Aug;21(4):325–335. [PubMed] [Google Scholar]
  23. Fujimura Y., Owen R. L. M cells as portals of infection: clinical and pathophysiological aspects. Infect Agents Dis. 1996 Jun;5(3):144–156. [PubMed] [Google Scholar]
  24. Gebert A., Fassbender S., Werner K., Weissferdt A. The development of M cells in Peyer's patches is restricted to specialized dome-associated crypts. Am J Pathol. 1999 May;154(5):1573–1582. doi: 10.1016/S0002-9440(10)65410-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gebert A., Hach G., Bartels H. Co-localization of vimentin and cytokeratins in M-cells of rabbit gut-associated lymphoid tissue (GALT). Cell Tissue Res. 1992 Aug;269(2):331–340. doi: 10.1007/BF00319625. [DOI] [PubMed] [Google Scholar]
  26. Gebert A., Hach G. Differential binding of lectins to M cells and enterocytes in the rabbit cecum. Gastroenterology. 1993 Nov;105(5):1350–1361. doi: 10.1016/0016-5085(93)90139-4. [DOI] [PubMed] [Google Scholar]
  27. Gebert A. Identification of M-cells in the rabbit tonsil by vimentin immunohistochemistry and in vivo protein transport. Histochem Cell Biol. 1995 Sep;104(3):211–220. doi: 10.1007/BF01835154. [DOI] [PubMed] [Google Scholar]
  28. Gebert A., Posselt W. Glycoconjugate expression defines the origin and differentiation pathway of intestinal M-cells. J Histochem Cytochem. 1997 Oct;45(10):1341–1350. doi: 10.1177/002215549704501003. [DOI] [PubMed] [Google Scholar]
  29. Gebert A. The role of M cells in the protection of mucosal membranes. Histochem Cell Biol. 1997 Dec;108(6):455–470. doi: 10.1007/s004180050186. [DOI] [PubMed] [Google Scholar]
  30. Giannasca P. J., Boden J. A., Monath T. P. Targeted delivery of antigen to hamster nasal lymphoid tissue with M-cell-directed lectins. Infect Immun. 1997 Oct;65(10):4288–4298. doi: 10.1128/iai.65.10.4288-4298.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Giannasca P. J., Giannasca K. T., Falk P., Gordon J. I., Neutra M. R. Regional differences in glycoconjugates of intestinal M cells in mice: potential targets for mucosal vaccines. Am J Physiol. 1994 Dec;267(6 Pt 1):G1108–G1121. doi: 10.1152/ajpgi.1994.267.6.G1108. [DOI] [PubMed] [Google Scholar]
  32. Giannasca P. J., Giannasca K. T., Leichtner A. M., Neutra M. R. Human intestinal M cells display the sialyl Lewis A antigen. Infect Immun. 1999 Feb;67(2):946–953. doi: 10.1128/iai.67.2.946-953.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Golovkina T. V., Shlomchik M., Hannum L., Chervonsky A. Organogenic role of B lymphocytes in mucosal immunity. Science. 1999 Dec 3;286(5446):1965–1968. doi: 10.1126/science.286.5446.1965. [DOI] [PubMed] [Google Scholar]
  34. Grützkau A., Hanski C., Hahn H., Riecken E. O. Involvement of M cells in the bacterial invasion of Peyer's patches: a common mechanism shared by Yersinia enterocolitica and other enteroinvasive bacteria. Gut. 1990 Sep;31(9):1011–1015. doi: 10.1136/gut.31.9.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Heath J. P. Epithelial cell migration in the intestine. Cell Biol Int. 1996 Feb;20(2):139–146. doi: 10.1006/cbir.1996.0018. [DOI] [PubMed] [Google Scholar]
  36. Hein W. R. Organization of mucosal lymphoid tissue. Curr Top Microbiol Immunol. 1999;236:1–15. doi: 10.1007/978-3-642-59951-4_1. [DOI] [PubMed] [Google Scholar]
  37. Hermiston M. L., Green R. P., Gordon J. I. Chimeric-transgenic mice represent a powerful tool for studying how the proliferation and differentiation programs of intestinal epithelial cell lineages are regulated. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8866–8870. doi: 10.1073/pnas.90.19.8866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Jarry A., Robaszkiewicz M., Brousse N., Potet F. Immune cells associated with M cells in the follicle-associated epithelium of Peyer's patches in the rat. An electron- and immuno-electron-microscopic study. Cell Tissue Res. 1989 Feb;255(2):293–298. doi: 10.1007/BF00224111. [DOI] [PubMed] [Google Scholar]
  39. Jepson M. A., Clark M. A. Studying M cells and their role in infection. Trends Microbiol. 1998 Sep;6(9):359–365. doi: 10.1016/s0966-842x(98)01337-7. [DOI] [PubMed] [Google Scholar]
  40. Jepson M. A., Mason C. M., Bennett M. K., Simmons N. L., Hirst B. H. Co-expression of vimentin and cytokeratins in M cells of rabbit intestinal lymphoid follicle-associated epithelium. Histochem J. 1992 Jan;24(1):33–39. doi: 10.1007/BF01043285. [DOI] [PubMed] [Google Scholar]
  41. Jepson M. A., Simmons N. L., Savidge T. C., James P. S., Hirst B. H. Selective binding and transcytosis of latex microspheres by rabbit intestinal M cells. Cell Tissue Res. 1993 Mar;271(3):399–405. doi: 10.1007/BF02913722. [DOI] [PubMed] [Google Scholar]
  42. Jones B. D., Ghori N., Falkow S. Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med. 1994 Jul 1;180(1):15–23. doi: 10.1084/jem.180.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Kerneis S., Bogdanova A., Colucci-Guyon E., Kraehenbuhl J. P., Pringault E. Cytosolic distribution of villin in M cells from mouse Peyer's patches correlates with the absence of a brush border. Gastroenterology. 1996 Feb;110(2):515–521. doi: 10.1053/gast.1996.v110.pm8566599. [DOI] [PubMed] [Google Scholar]
  44. Kernéis S., Bogdanova A., Kraehenbuhl J. P., Pringault E. Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria. Science. 1997 Aug 15;277(5328):949–952. doi: 10.1126/science.277.5328.949. [DOI] [PubMed] [Google Scholar]
  45. Kett K., Baklien K., Bakken A., Kral J. G., Fausa O., Brandtzaeg P. Intestinal B-cell isotype response in relation to local bacterial load: evidence for immunoglobulin A subclass adaptation. Gastroenterology. 1995 Sep;109(3):819–825. doi: 10.1016/0016-5085(95)90389-5. [DOI] [PubMed] [Google Scholar]
  46. Kohbata S., Yokoyama H., Yabuuchi E. Cytopathogenic effect of Salmonella typhi GIFU 10007 on M cells of murine ileal Peyer's patches in ligated ileal loops: an ultrastructural study. Microbiol Immunol. 1986;30(12):1225–1237. doi: 10.1111/j.1348-0421.1986.tb03055.x. [DOI] [PubMed] [Google Scholar]
  47. Louvard D., Kedinger M., Hauri H. P. The differentiating intestinal epithelial cell: establishment and maintenance of functions through interactions between cellular structures. Annu Rev Cell Biol. 1992;8:157–195. doi: 10.1146/annurev.cb.08.110192.001105. [DOI] [PubMed] [Google Scholar]
  48. Madara J. L., Nash S., Moore R., Atisook K. Structure and function of the intestinal epithelial barrier in health and disease. Monogr Pathol. 1990;(31):306–324. [PubMed] [Google Scholar]
  49. Maury J., Nicoletti C., Guzzo-Chambraud L., Maroux S. The filamentous brush border glycocalyx, a mucin-like marker of enterocyte hyper-polarization. Eur J Biochem. 1995 Mar 1;228(2):323–331. [PubMed] [Google Scholar]
  50. McGhee J. R., Kiyono H. New perspectives in vaccine development: mucosal immunity to infections. Infect Agents Dis. 1993 Apr;2(2):55–73. [PubMed] [Google Scholar]
  51. Meynell H. M., Thomas N. W., James P. S., Holland J., Taussig M. J., Nicoletti C. Up-regulation of microsphere transport across the follicle-associated epithelium of Peyer's patch by exposure to Streptococcus pneumoniae R36a. FASEB J. 1999 Apr;13(6):611–619. doi: 10.1096/fasebj.13.6.611. [DOI] [PubMed] [Google Scholar]
  52. Mutwiri G., Watts T., Lew L., Beskorwayne T., Papp Z., Baca-Estrada M. E., Griebel P. Ileal and jejunal Peyer's patches play distinct roles in mucosal immunity of sheep. Immunology. 1999 Jul;97(3):455–461. doi: 10.1046/j.1365-2567.1999.00791.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Nagura H., Ohtani H., Masuda T., Kimura M., Nakamura S. HLA-DR expression on M cells overlying Peyer's patches is a common feature of human small intestine. Acta Pathol Jpn. 1991 Nov;41(11):818–823. doi: 10.1111/j.1440-1827.1991.tb01624.x. [DOI] [PubMed] [Google Scholar]
  54. Neutra M. R. Current concepts in mucosal immunity. V Role of M cells in transepithelial transport of antigens and pathogens to the mucosal immune system. Am J Physiol. 1998 May;274(5 Pt 1):G785–G791. doi: 10.1152/ajpgi.1998.274.5.G785. [DOI] [PubMed] [Google Scholar]
  55. Neutra M. R., Frey A., Kraehenbuhl J. P. Epithelial M cells: gateways for mucosal infection and immunization. Cell. 1996 Aug 9;86(3):345–348. doi: 10.1016/s0092-8674(00)80106-3. [DOI] [PubMed] [Google Scholar]
  56. Neutra M. R., Pringault E., Kraehenbuhl J. P. Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu Rev Immunol. 1996;14:275–300. doi: 10.1146/annurev.immunol.14.1.275. [DOI] [PubMed] [Google Scholar]
  57. Owen R. L., Bhalla D. K. Cytochemical analysis of alkaline phosphatase and esterase activities and of lectin-binding and anionic sites in rat and mouse Peyer's patch M cells. Am J Anat. 1983 Oct;168(2):199–212. doi: 10.1002/aja.1001680207. [DOI] [PubMed] [Google Scholar]
  58. Owen R. L., Jones A. L. Epithelial cell specialization within human Peyer's patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology. 1974 Feb;66(2):189–203. [PubMed] [Google Scholar]
  59. Owen R. L. Mid-life crisis for M cells. Gut. 1998 Jan;42(1):11–12. doi: 10.1136/gut.42.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Owen R. L. Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer's patches in the normal unobstructed mouse intestine: an ultrastructural study. Gastroenterology. 1977 Mar;72(3):440–451. [PubMed] [Google Scholar]
  61. Pappo J., Mahlman R. T. Follicle epithelial M cells are a source of interleukin-1 in Peyer's patches. Immunology. 1993 Mar;78(3):505–507. [PMC free article] [PubMed] [Google Scholar]
  62. Perdomo O. J., Cavaillon J. M., Huerre M., Ohayon H., Gounon P., Sansonetti P. J. Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis. J Exp Med. 1994 Oct 1;180(4):1307–1319. doi: 10.1084/jem.180.4.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Ponder B. A., Schmidt G. H., Wilkinson M. M., Wood M. J., Monk M., Reid A. Derivation of mouse intestinal crypts from single progenitor cells. Nature. 1985 Feb 21;313(6004):689–691. doi: 10.1038/313689a0. [DOI] [PubMed] [Google Scholar]
  64. Regoli M., Bertelli E., Borghesi C., Nicoletti C. Three-dimensional (3D-) reconstruction of M cells in rabbit Peyer's patches: definition of the intraepithelial compartment of the follicle-associated epithelium. Anat Rec. 1995 Sep;243(1):19–26. doi: 10.1002/ar.1092430104. [DOI] [PubMed] [Google Scholar]
  65. Regoli M., Borghesi C., Bertelli E., Nicoletti C. A morphological study of the lymphocyte traffic in Peyer's patches after an in vivo antigenic stimulation. Anat Rec. 1994 May;239(1):47–54. doi: 10.1002/ar.1092390106. [DOI] [PubMed] [Google Scholar]
  66. Rubin D. C., Ong D. E., Gordon J. I. Cellular differentiation in the emerging fetal rat small intestinal epithelium: mosaic patterns of gene expression. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1278–1282. doi: 10.1073/pnas.86.4.1278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Sansonetti P. J., Phalipon A. M cells as ports of entry for enteroinvasive pathogens: mechanisms of interaction, consequences for the disease process. Semin Immunol. 1999 Jun;11(3):193–203. doi: 10.1006/smim.1999.0175. [DOI] [PubMed] [Google Scholar]
  68. Sharma R., Schumacher U., Adam E. Lectin histochemistry reveals the appearance of M-cells in Peyer's patches of SCID mice after syngeneic normal bone marrow transplantation. J Histochem Cytochem. 1998 Feb;46(2):143–148. doi: 10.1177/002215549804600202. [DOI] [PubMed] [Google Scholar]
  69. Smith M. W., James P. S., Tivey D. R., Brown D. Automated histochemical analysis of cell populations in the intact follicle-associated epithelium of the mouse Peyer's patch. Histochem J. 1988 Aug;20(8):443–448. doi: 10.1007/BF01002430. [DOI] [PubMed] [Google Scholar]
  70. Smith M. W., James P. S., Tivey D. R. M cell numbers increase after transfer of SPF mice to a normal animal house environment. Am J Pathol. 1987 Sep;128(3):385–389. [PMC free article] [PubMed] [Google Scholar]
  71. Spencer J., Finn T., Isaacson P. G. Human Peyer's patches: an immunohistochemical study. Gut. 1986 Apr;27(4):405–410. doi: 10.1136/gut.27.4.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Wolf J. L., Bye W. A. The membranous epithelial (M) cell and the mucosal immune system. Annu Rev Med. 1984;35:95–112. doi: 10.1146/annurev.me.35.020184.000523. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES