Skip to main content
Gut logoLink to Gut
. 2000 Dec;47(6):825–831. doi: 10.1136/gut.47.6.825

Inhibition of retinol oxidation by ethanol in the rat liver and colon

A Parlesak 1, I Menzl 1, A Feuchter 1, J Bode 1, C Bode 1
PMCID: PMC1728129  PMID: 11076882

Abstract

BACKGROUND—Epidemiological evidence has been presented for an increased risk of development of colon cancer after chronic alcohol abuse. Alcohol is degraded by cytosolic alcohol dehydrogenases that also are capable of retinol oxidation. Inhibition of retinol oxidation to retinoic acid has been shown to occur in parallel with profound impairment of intracellular retinoid signal transduction and loss of cell differentiation control.
AIMS—In the present study, the change in cytosolic retinol oxidation and retinoic acid formation by ethanol concentrations that occur in body tissues in humans after social drinking was measured in cells from the liver, and small and large intestine of the rat.
RESULTS—The specific catalytic efficiency Vmax/Km (ml/min/g) of cytosolic retinol oxidation in the large intestine (28.9) was found to be distinctly higher than that in the liver (3.4), while the efficiency in the small intestine was negligible (0.20). In the presence of increasing ethanol concentrations (9, 17, and 34 mM), Vmax/Km for retinol oxidation decreased in a dose dependent manner to 7.8% of the initial value in the large intestine and to 12% in the liver. The Vmax/Km of retinoic acid formation in the liver cytosol decreased to 15%.
CONCLUSIONS—Our data demonstrate impairment of hepatic and intestinal cytosolic retinol oxidation and retinoic acid formation by ethanol at concentrations in body tissues after social drinking in humans. The results suggest that the increased risk of developing colorectal neoplasias after alcohol abuse may, at least in part, be caused by impaired retinoid signal transduction.


Keywords: retinol; retinoic acid; ethanol; alcohol; alcohol dehydrogenases; intestine

Full Text

The Full Text of this article is available as a PDF (196.5 KB).

Figure 1  .

Figure 1  

Effect of different ethanol concentrations (without (w/o) alcohol, and 8.6 mM, 17 mM, and 34 mM ethanol) on cytosolic (c) retinol dehydrogenase activity in the liver (A) and large intestine (B). In both organs, retinol oxidation is inhibited by increasing ethanol concentration in a dose dependent manner.

Figure 2  .

Figure 2  

After reverse phase separation, the internal standard (4-(1,1,3,3 tetramethylbutyl)-phenol solution; TMBP 2.26/2.20 minutes at 276 nm) and retinol (6.25/6.04 minutes at 326 nm) were quantified in the first channel of the diode array detector (upper chromatogram) while retinoic acid (2.87/2.78 minutes at 340 nm) and retinal (7.76/7.50 minutes at 382 nm) were measured in the second one (lower chromatogram). The HPLC chromatograms resulted from incubation (20 minutes, 37° C) of a buffered retinol solution (140 mM) with 4 mM NAD+ in the presence of 10% (v/v) cytosolic fraction obtained from rat mucosa cells without ethanol (A) and with 0.2% ethanol (B). Ethanol significantly inhibited the amount of formed retinal while the concentration of retinoic acid remained at levels which also occurred in control assays without cytosol. For calculation of enzyme kinetics, differences between concentrations found in the experiments with cytosol and blank incubations were applied.

Figure 3  .

Figure 3  

Retinoic acid formation in hepatic cytosol of the rat at different ethanol concentrations (without (w/o) alcohol, and 8.6 mM, 17 mM, and 34 mM ethanol). The ethanol associated inhibition of enzyme activity, which is related to the concentration of the applied retinol concentration, is in parallel with overall retinol oxidation.

Figure 4  .

Figure 4  

Retinoic acid formation in the hepatic cytosol of the rat shown at different ethanol concentrations (without (w/o) alcohol, and 8.6 mM, 17 mM, and 34 mM ethanol) is dependent on the average intermediary formed retinal concentration. The reduction in retinoic acid formation from retinal by ethanol indicates ethanol induced reduction of retinal oxidation in addition to impairment of retinol oxidation.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addolorato G., Capristo E., Caputo F., Greco A. V., Ceccanti M., Stefanini G. F., Gasbarrini G. Nutritional status and body fluid distribution in chronic alcoholics compared with controls. Alcohol Clin Exp Res. 1999 Jul;23(7):1232–1237. doi: 10.1111/j.1530-0277.1999.tb04283.x. [DOI] [PubMed] [Google Scholar]
  2. Ang H. L., Deltour L., Zgombić-Knight M., Wagner M. A., Duester G. Expression patterns of class I and class IV alcohol dehydrogenase genes in developing epithelia suggest a role for alcohol dehydrogenase in local retinoic acid synthesis. Alcohol Clin Exp Res. 1996 Sep;20(6):1050–1064. doi: 10.1111/j.1530-0277.1996.tb01946.x. [DOI] [PubMed] [Google Scholar]
  3. Barroga E. F., Kadosawa T., Okumura M., Fujinaga T. Effects of vitamin D and retinoids on the differentiation and growth in vitro of canine osteosarcoma and its clonal cell lines. Res Vet Sci. 1999 Jun;66(3):231–236. doi: 10.1053/rvsc.1998.0265. [DOI] [PubMed] [Google Scholar]
  4. Boerman M. H., Napoli J. L. Cellular retinol-binding protein-supported retinoic acid synthesis. Relative roles of microsomes and cytosol. J Biol Chem. 1996 Mar 8;271(10):5610–5616. doi: 10.1074/jbc.271.10.5610. [DOI] [PubMed] [Google Scholar]
  5. Boerman M. H., Napoli J. L. Characterization of a microsomal retinol dehydrogenase: a short-chain alcohol dehydrogenase with integral and peripheral membrane forms that interacts with holo-CRBP (type I). Biochemistry. 1995 May 30;34(21):7027–7037. doi: 10.1021/bi00021a014. [DOI] [PubMed] [Google Scholar]
  6. Boleda M. D., Saubi N., Farrés J., Parés X. Physiological substrates for rat alcohol dehydrogenase classes: aldehydes of lipid peroxidation, omega-hydroxyfatty acids, and retinoids. Arch Biochem Biophys. 1993 Nov 15;307(1):85–90. doi: 10.1006/abbi.1993.1564. [DOI] [PubMed] [Google Scholar]
  7. Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996 Jul;10(9):940–954. [PubMed] [Google Scholar]
  8. Clifford J., Chiba H., Sobieszczuk D., Metzger D., Chambon P. RXRalpha-null F9 embryonal carcinoma cells are resistant to the differentiation, anti-proliferative and apoptotic effects of retinoids. EMBO J. 1996 Aug 15;15(16):4142–4155. [PMC free article] [PubMed] [Google Scholar]
  9. Collins M. D., Eckhoff C., Chahoud I., Bochert G., Nau H. 4-Methylpyrazole partially ameliorated the teratogenicity of retinol and reduced the metabolic formation of all-trans-retinoic acid in the mouse. Arch Toxicol. 1992;66(9):652–659. doi: 10.1007/BF01981505. [DOI] [PubMed] [Google Scholar]
  10. DeLuca H. F., Roberts A. B. Pathways of retinoic acid and retinol metabolism. Am J Clin Nutr. 1969 Jul;22(7):945–952. doi: 10.1093/ajcn/22.7.945. [DOI] [PubMed] [Google Scholar]
  11. Deltour L., Ang H. L., Duester G. Ethanol inhibition of retinoic acid synthesis as a potential mechanism for fetal alcohol syndrome. FASEB J. 1996 Jul;10(9):1050–1057. [PubMed] [Google Scholar]
  12. Duester G. Involvement of alcohol dehydrogenase, short-chain dehydrogenase/reductase, aldehyde dehydrogenase, and cytochrome P450 in the control of retinoid signaling by activation of retinoic acid synthesis. Biochemistry. 1996 Sep 24;35(38):12221–12227. doi: 10.1021/bi961176+. [DOI] [PubMed] [Google Scholar]
  13. Duester G., Shean M. L., McBride M. S., Stewart M. J. Retinoic acid response element in the human alcohol dehydrogenase gene ADH3: implications for regulation of retinoic acid synthesis. Mol Cell Biol. 1991 Mar;11(3):1638–1646. doi: 10.1128/mcb.11.3.1638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Giguere V., Ong E. S., Segui P., Evans R. M. Identification of a receptor for the morphogen retinoic acid. Nature. 1987 Dec 17;330(6149):624–629. doi: 10.1038/330624a0. [DOI] [PubMed] [Google Scholar]
  15. Han C. L., Liao C. S., Wu C. W., Hwong C. L., Lee A. R., Yin S. J. Contribution to first-pass metabolism of ethanol and inhibition by ethanol for retinol oxidation in human alcohol dehydrogenase family--implications for etiology of fetal alcohol syndrome and alcohol-related diseases. Eur J Biochem. 1998 May 15;254(1):25–31. doi: 10.1046/j.1432-1327.1998.2540025.x. [DOI] [PubMed] [Google Scholar]
  16. Haselbeck R. J., Duester G. Regional restriction of alcohol/retinol dehydrogenases along the mouse gastrointestinal epithelium. Alcohol Clin Exp Res. 1997 Nov;21(8):1484–1490. [PubMed] [Google Scholar]
  17. Herr F. M., Wardlaw S. A., Kakkad B., Albrecht A., Quick T. C., Ong D. E. Intestinal vitamin A metabolism: coordinate distribution of enzymes and CRBP(II). J Lipid Res. 1993 Sep;34(9):1545–1554. [PubMed] [Google Scholar]
  18. Heyman R. A., Mangelsdorf D. J., Dyck J. A., Stein R. B., Eichele G., Evans R. M., Thaller C. 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell. 1992 Jan 24;68(2):397–406. doi: 10.1016/0092-8674(92)90479-v. [DOI] [PubMed] [Google Scholar]
  19. Hög J. O. Cloning and characterization of a novel rat alcohol dehydrogenase of class II type. FEBS Lett. 1995 Jul 24;368(3):445–448. doi: 10.1016/0014-5793(95)00707-g. [DOI] [PubMed] [Google Scholar]
  20. Julià P., Farrés J., Parés X. Characterization of three isoenzymes of rat alcohol dehydrogenase. Tissue distribution and physical and enzymatic properties. Eur J Biochem. 1987 Jan 2;162(1):179–189. doi: 10.1111/j.1432-1033.1987.tb10559.x. [DOI] [PubMed] [Google Scholar]
  21. Julià P., Farrés J., Parés X. Ocular alcohol dehydrogenase in the rat: regional distribution and kinetics of the ADH-1 isoenzyme with retinol and retinal. Exp Eye Res. 1986 Apr;42(4):305–314. doi: 10.1016/0014-4835(86)90023-0. [DOI] [PubMed] [Google Scholar]
  22. Kakkad B. P., Ong D. E. Reduction of retinaldehyde bound to cellular retinol-binding protein (type II) by microsomes from rat small intestine. J Biol Chem. 1988 Sep 15;263(26):12916–12919. [PubMed] [Google Scholar]
  23. Kedishvili N. Y., Gough W. H., Davis W. I., Parsons S., Li T. K., Bosron W. F. Effect of cellular retinol-binding protein on retinol oxidation by human class IV retinol/alcohol dehydrogenase and inhibition by ethanol. Biochem Biophys Res Commun. 1998 Aug 10;249(1):191–196. doi: 10.1006/bbrc.1998.9105. [DOI] [PubMed] [Google Scholar]
  24. Keller H., Givel F., Perroud M., Wahli W. Signaling cross-talk between peroxisome proliferator-activated receptor/retinoid X receptor and estrogen receptor through estrogen response elements. Mol Endocrinol. 1995 Jul;9(7):794–804. doi: 10.1210/mend.9.7.7476963. [DOI] [PubMed] [Google Scholar]
  25. Kikendall J. W., Bowen P. E., Burgess M. B., Magnetti C., Woodward J., Langenberg P. Cigarettes and alcohol as independent risk factors for colonic adenomas. Gastroenterology. 1989 Sep;97(3):660–664. doi: 10.1016/0016-5085(89)90637-9. [DOI] [PubMed] [Google Scholar]
  26. Kim C. I., Leo M. A., Lieber C. S. Retinol forms retinoic acid via retinal. Arch Biochem Biophys. 1992 May 1;294(2):388–393. doi: 10.1016/0003-9861(92)90700-7. [DOI] [PubMed] [Google Scholar]
  27. Klatsky A. L., Armstrong M. A., Friedman G. D., Hiatt R. A. The relations of alcoholic beverage use to colon and rectal cancer. Am J Epidemiol. 1988 Nov;128(5):1007–1015. doi: 10.1093/oxfordjournals.aje.a115045. [DOI] [PubMed] [Google Scholar]
  28. Kliewer S. A., Umesono K., Mangelsdorf D. J., Evans R. M. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature. 1992 Jan 30;355(6359):446–449. doi: 10.1038/355446a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kune G. A., Vitetta L. Alcohol consumption and the etiology of colorectal cancer: a review of the scientific evidence from 1957 to 1991. Nutr Cancer. 1992;18(2):97–111. doi: 10.1080/01635589209514210. [DOI] [PubMed] [Google Scholar]
  30. Li E., Qian S. J., Winter N. S., d'Avignon A., Levin M. S., Gordon J. I. Fluorine nuclear magnetic resonance analysis of the ligand binding properties of two homologous rat cellular retinol-binding proteins expressed in Escherichia coli. J Biol Chem. 1991 Feb 25;266(6):3622–3629. [PubMed] [Google Scholar]
  31. Martini R., Murray M. Participation of P450 3A enzymes in rat hepatic microsomal retinoic acid 4-hydroxylation. Arch Biochem Biophys. 1993 May 15;303(1):57–66. doi: 10.1006/abbi.1993.1255. [DOI] [PubMed] [Google Scholar]
  32. Mascrez B., Mark M., Dierich A., Ghyselinck N. B., Kastner P., Chambon P. The RXRalpha ligand-dependent activation function 2 (AF-2) is important for mouse development. Development. 1998 Dec;125(23):4691–4707. doi: 10.1242/dev.125.23.4691. [DOI] [PubMed] [Google Scholar]
  33. Matikainen S., Lehtonen A., Sareneva T., Julkunen I. Regulation of IRF and STAT gene expression by retinoic acid. Leuk Lymphoma. 1998 Jun;30(1-2):63–71. doi: 10.3109/10428199809050930. [DOI] [PubMed] [Google Scholar]
  34. McMichael A. J., Potter J. D., Hetzel B. S. Time trends in colo-rectal cancer mortality in relation to food and alcohol consumption: United States, United Kingdom, Australia and New Zealand. Int J Epidemiol. 1979 Dec;8(4):295–303. doi: 10.1093/ije/8.4.295. [DOI] [PubMed] [Google Scholar]
  35. Mehta R. G., Barua A. B., Olson J. A., Moon R. C. Retinoid glucuronides do not interact with retinoid binding proteins. Int J Vitam Nutr Res. 1992;62(2):143–147. [PubMed] [Google Scholar]
  36. Mezey E., Holt P. R. The inhibitory effect of ethanol on retinol oxidation by human liver and cattle retina. Exp Mol Pathol. 1971 Oct;15(2):148–156. doi: 10.1016/0014-4800(71)90095-5. [DOI] [PubMed] [Google Scholar]
  37. Nagy L., Thomazy V. A., Heyman R. A., Davies P. J. Retinoid-induced apoptosis in normal and neoplastic tissues. Cell Death Differ. 1998 Jan;5(1):11–19. doi: 10.1038/sj.cdd.4400337. [DOI] [PubMed] [Google Scholar]
  38. Napoli J. L. Biosynthesis and metabolism of retinoic acid: roles of CRBP and CRABP in retinoic acid: roles of CRBP and CRABP in retinoic acid homeostasis. J Nutr. 1993 Feb;123(2 Suppl):362–366. doi: 10.1093/jn/123.suppl_2.362. [DOI] [PubMed] [Google Scholar]
  39. Newberne P. M., Suphakarn V. Preventive role of vitamin A in colon carcinogenesis in rats. Cancer. 1977 Nov;40(5 Suppl):2553–2556. doi: 10.1002/1097-0142(197711)40:5+<2553::aid-cncr2820400924>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  40. O'Dwyer P. J., Ravikumar T. S., McCabe D. P., Steele G., Jr Effect of 13-cis-retinoic acid on tumor prevention, tumor growth, and metastasis in experimental colon cancer. J Surg Res. 1987 Dec;43(6):550–557. doi: 10.1016/0022-4804(87)90130-2. [DOI] [PubMed] [Google Scholar]
  41. Olson J. A. Provitamin A function of carotenoids: the conversion of beta-carotene into vitamin A. J Nutr. 1989 Jan;119(1):105–108. doi: 10.1093/jn/119.1.105. [DOI] [PubMed] [Google Scholar]
  42. Ong D. E., Kakkad B., MacDonald P. N. Acyl-CoA-independent esterification of retinol bound to cellular retinol-binding protein (type II) by microsomes from rat small intestine. J Biol Chem. 1987 Feb 25;262(6):2729–2736. [PubMed] [Google Scholar]
  43. Ottonello S., Scita G., Mantovani G., Cavazzini D., Rossi G. L. Retinol bound to cellular retinol-binding protein is a substrate for cytosolic retinoic acid synthesis. J Biol Chem. 1993 Dec 25;268(36):27133–27142. [PubMed] [Google Scholar]
  44. Pallet V., Coustaut M., Naulet F., Higueret D., Garcin H., Higueret P. Chronic ethanol administration enhances retinoic acid and triiodothyronine receptor expression in mouse liver. FEBS Lett. 1993 Sep 27;331(1-2):119–122. doi: 10.1016/0014-5793(93)80309-i. [DOI] [PubMed] [Google Scholar]
  45. Petkovich M. Regulation of gene expression by vitamin A: the role of nuclear retinoic acid receptors. Annu Rev Nutr. 1992;12:443–471. doi: 10.1146/annurev.nu.12.070192.002303. [DOI] [PubMed] [Google Scholar]
  46. Potter J. D., McMichael A. J. Diet and cancer of the colon and rectum: a case-control study. J Natl Cancer Inst. 1986 Apr;76(4):557–569. doi: 10.1093/jnci/76.4.557. [DOI] [PubMed] [Google Scholar]
  47. Reifen R., Nyska A., Koperstein L., Zusman I. Intestinal and hepatic cell kinetics and mucous changes in vitamin-A-deficient rats. Int J Mol Med. 1998 Mar;1(3):579–582. doi: 10.3892/ijmm.1.3.579. [DOI] [PubMed] [Google Scholar]
  48. Rogers A. E., Herndon B. J., Newberne P. M. Induction by dimethylhydrazine of intestinal carcinoma in normal rats and rats fed high or low levels of vitamin A. Cancer Res. 1973 May;33(5):1003–1009. [PubMed] [Google Scholar]
  49. Ross A. C. Cellular metabolism and activation of retinoids: roles of cellular retinoid-binding proteins. FASEB J. 1993 Feb 1;7(2):317–327. doi: 10.1096/fasebj.7.2.8440409. [DOI] [PubMed] [Google Scholar]
  50. Segaert S., Garmyn M., Degreef H., Bouillon R. Retinoic acid modulates the anti-proliferative effect of 1,25-dihydroxyvitamin D3 in cultured human epidermal keratinocytes. J Invest Dermatol. 1997 Jul;109(1):46–54. doi: 10.1111/1523-1747.ep12276488. [DOI] [PubMed] [Google Scholar]
  51. Seitz H. K., Simanowski U. A., Homann N., Waldherr R. Cell proliferation and its evaluation in the colorectal mucosa: effect of ethanol. Z Gastroenterol. 1998 Aug;36(8):645–655. [PubMed] [Google Scholar]
  52. Silverman J., Katayama S., Zelenakas K., Lauber J., Musser T. K., Reddy M., Levenstein M. J., Weisburger H. Effect of retinoids on the induction of colon cancer in F344 rats by N-methyl-N-nitrosourea or by 1,2-dimethylhydrazine. Carcinogenesis. 1981;2(11):1167–1172. doi: 10.1093/carcin/2.11.1167. [DOI] [PubMed] [Google Scholar]
  53. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  54. Takatsuka J., Takahashi N., de Luca L. M. Retinoic acid metabolism and inhibition of cell proliferation: an unexpected liaison. Cancer Res. 1996 Feb 15;56(4):675–678. [PubMed] [Google Scholar]
  55. Veech R. L., Eggleston L. V., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem J. 1969 Dec;115(4):609–619. doi: 10.1042/bj1150609a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wolf G. Multiple functions of vitamin A. Physiol Rev. 1984 Jul;64(3):873–937. doi: 10.1152/physrev.1984.64.3.873. [DOI] [PubMed] [Google Scholar]
  57. Yang Z. N., Davis G. J., Hurley T. D., Stone C. L., Li T. K., Bosron W. F. Catalytic efficiency of human alcohol dehydrogenases for retinol oxidation and retinal reduction. Alcohol Clin Exp Res. 1994 Jun;18(3):587–591. doi: 10.1111/j.1530-0277.1994.tb00914.x. [DOI] [PubMed] [Google Scholar]
  58. Yokoyama H., Baraona E., Lieber C. S. Upstream structure of human ADH7 gene and the organ distribution of its expression. Biochem Biophys Res Commun. 1995 Nov 2;216(1):216–222. doi: 10.1006/bbrc.1995.2613. [DOI] [PubMed] [Google Scholar]
  59. Zhang X. K., Hoffmann B., Tran P. B., Graupner G., Pfahl M. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature. 1992 Jan 30;355(6359):441–446. doi: 10.1038/355441a0. [DOI] [PubMed] [Google Scholar]
  60. Zile M., Bunge C., Deluca H. F. Effect of vitamin A deficiency on intestinal cell proliferation in the rat. J Nutr. 1977 Apr;107(4):552–560. doi: 10.1093/jn/107.4.552. [DOI] [PubMed] [Google Scholar]
  61. de Toledo F. G., Cheng J., Dousa T. P. Retinoic acid and triiodothyronine stimulate ADP-ribosyl cyclase activity in rat vascular smooth muscle cells. Biochem Biophys Res Commun. 1997 Sep 29;238(3):847–850. doi: 10.1006/bbrc.1997.7392. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES