Abstract
Biliary duct carcinomas (BDCs) are relatively rare and the carcinogenic mechanisms underlying their induction are poorly understood. There are two growth patterns, polypoid and non-polypoid infiltrative type, but little information is available concerning the relation between growth pattern and genetic alterations. A comparative study was therefore conducted to clarify if differences in genetic changes, including loss of heterozygosity (LOH) at 5q, 9p, 17p, and 18q, and K-ras mutations exist between polypoid and non-polypoid infiltrative type BDCs. LOH analysis was performed using microsatellite markers and K-ras point mutations were analysed by dot blot hybridisation. The incidences of changes for polypoid and non-polypoid infiltrative types were 73% and 26% on 5q, 63% and 59% on 9p, 55% and 50% on 17p, and 20% and 18% on 18q, and 25% and 27% for K-ras mutations. Most importantly, we found the frequency of 5qLOH to be significantly higher with polypoid growth than in the non-polypoid infiltrative type (p<0.05), especially in extrahepatic duct carcinomas (p<0.05). The incidences of other genetic alterations (LOH at 9p, 17p, and 18q, and K-ras mutations) showed similar rates with both tumour types. The present data suggest that 5qLOH may have a close relation with polypoid growth in BDCs. Keywords: biliary duct carcinoma; loss of heterozygosity; K-ras; chromosome 5q; growth pattern
Full Text
The Full Text of this article is available as a PDF (189.9 KB).
Figure 1 .
Examples of the two growth patterns. (A) Polypoid growth type (haematoxylin-eosin, ×12.5). (B) Invasive portion (haematoxylin-eosin, ×100) with cholangiography of the same case (C). (D) Non-polypoid infiltrative type (haematoxylin-eosin, ×12.5). (E) Invasive portion (haematoxylin-eosin, ×100) with cholangiography of the same case (F).
Figure 2 .
Illustration of examples of loss of heterozygosity (LOH). Polymerase chain reaction products for normal tissue (N) and tumour (T) DNA are shown. Microsatellite alleles are represented by two signals in the case of heterozygosity. LOH at one allele corresponds to almost complete loss of one of two signals (arrowheads).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Achille A., Baron A., Zamboni G., Di Pace C., Orlandini S., Scarpa A. Chromosome 5 allelic losses are early events in tumours of the papilla of Vater and occur at sites similar to those of gastric cancer. Br J Cancer. 1998 Dec;78(12):1653–1660. doi: 10.1038/bjc.1998.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Achille A., Baron A., Zamboni G., Orlandini S., Bogina G., Bassi C., Iacono C., Scarpa A. Molecular pathogenesis of sporadic duodenal cancer. Br J Cancer. 1998 Mar;77(5):760–765. doi: 10.1038/bjc.1998.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Achille A., Scupoli M. T., Magalini A. R., Zamboni G., Romanelli M. G., Orlandini S., Biasi M. O., Lemoine N. R., Accolla R. S., Scarpa A. APC gene mutations and allelic losses in sporadic ampullary tumours: evidence of genetic difference from tumours associated with familial adenomatous polyposis. Int J Cancer. 1996 Nov 4;68(3):305–312. doi: 10.1002/(SICI)1097-0215(19961104)68:3<305::AID-IJC7>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
- Boynton R. F., Blount P. L., Yin J., Brown V. L., Huang Y., Tong Y., McDaniel T., Newkirk C., Resau J. H., Raskind W. H. Loss of heterozygosity involving the APC and MCC genetic loci occurs in the majority of human esophageal cancers. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3385–3388. doi: 10.1073/pnas.89.8.3385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang H. J., Kim S. W., Kim Y. T., Kim W. H. Loss of heterozygosity in dysplasia and carcinoma of the gallbladder. Mod Pathol. 1999 Aug;12(8):763–769. [PubMed] [Google Scholar]
- Chiang J. M., Chou Y. H., Chou T. B. K-ras codon 12 mutation determines the polypoid growth of colorectral cancer. Cancer Res. 1998 Aug 1;58(15):3289–3293. [PubMed] [Google Scholar]
- Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. doi: 10.1016/0092-8674(90)90186-i. [DOI] [PubMed] [Google Scholar]
- Hahn S. A., Schutte M., Hoque A. T., Moskaluk C. A., da Costa L. T., Rozenblum E., Weinstein C. L., Fischer A., Yeo C. J., Hruban R. H. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996 Jan 19;271(5247):350–353. doi: 10.1126/science.271.5247.350. [DOI] [PubMed] [Google Scholar]
- Hidaka E., Yanagisawa A., Sakai Y., Seki M., Kitagawa T., Setoguchi T., Kato Y. Losses of heterozygosity on chromosomes 17p and 9p/18q may play important roles in early and advanced phases of gallbladder carcinogenesis. J Cancer Res Clin Oncol. 1999 Aug-Sep;125(8-9):439–443. doi: 10.1007/s004320050300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hidaka E., Yanagisawa A., Seki M., Takano K., Setoguchi T., Kato Y. High frequency of K-ras mutations in biliary duct carcinomas of cases with a long common channel in the papilla of Vater. Cancer Res. 2000 Feb 1;60(3):522–524. [PubMed] [Google Scholar]
- Jiang W., Kahn S. M., Guillem J. G., Lu S. H., Weinstein I. B. Rapid detection of ras oncogenes in human tumors: applications to colon, esophageal, and gastric cancer. Oncogene. 1989 Jul;4(7):923–928. [PubMed] [Google Scholar]
- Kamb A., Gruis N. A., Weaver-Feldhaus J., Liu Q., Harshman K., Tavtigian S. V., Stockert E., Day R. S., 3rd, Johnson B. E., Skolnick M. H. A cell cycle regulator potentially involved in genesis of many tumor types. Science. 1994 Apr 15;264(5157):436–440. doi: 10.1126/science.8153634. [DOI] [PubMed] [Google Scholar]
- Kang Y. K., Kim W. H., Lee H. W., Lee H. K., Kim Y. I. Mutation of p53 and K-ras, and loss of heterozygosity of APC in intrahepatic cholangiocarcinoma. Lab Invest. 1999 Apr;79(4):477–483. [PubMed] [Google Scholar]
- Miyaki M., Konishi M., Kikuchi-Yanoshita R., Enomoto M., Igari T., Tanaka K., Muraoka M., Takahashi H., Amada Y., Fukayama M. Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res. 1994 Jun 1;54(11):3011–3020. [PubMed] [Google Scholar]
- Nishisho I., Nakamura Y., Miyoshi Y., Miki Y., Ando H., Horii A., Koyama K., Utsunomiya J., Baba S., Hedge P. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science. 1991 Aug 9;253(5020):665–669. doi: 10.1126/science.1651563. [DOI] [PubMed] [Google Scholar]
- Nobori T., Miura K., Wu D. J., Lois A., Takabayashi K., Carson D. A. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature. 1994 Apr 21;368(6473):753–756. doi: 10.1038/368753a0. [DOI] [PubMed] [Google Scholar]
- Ohashi K., Nakajima Y., Kanehiro H., Tsutsumi M., Taki J., Aomatsu Y., Yoshimura A., Ko S., Kin T., Yagura K. Ki-ras mutations and p53 protein expressions in intrahepatic cholangiocarcinomas: relation to gross tumor morphology. Gastroenterology. 1995 Nov;109(5):1612–1617. doi: 10.1016/0016-5085(95)90650-9. [DOI] [PubMed] [Google Scholar]
- Rubinfeld B., Souza B., Albert I., Müller O., Chamberlain S. H., Masiarz F. R., Munemitsu S., Polakis P. Association of the APC gene product with beta-catenin. Science. 1993 Dec 10;262(5140):1731–1734. doi: 10.1126/science.8259518. [DOI] [PubMed] [Google Scholar]
- Sano T., Tsujino T., Yoshida K., Nakayama H., Haruma K., Ito H., Nakamura Y., Kajiyama G., Tahara E. Frequent loss of heterozygosity on chromosomes 1q, 5q, and 17p in human gastric carcinomas. Cancer Res. 1991 Jun 1;51(11):2926–2931. [PubMed] [Google Scholar]
- Shiraishi K., Kusano N., Okita S., Oga A., Okita K., Sasaki K. Genetic aberrations detected by comparative genomic hybridization in biliary tract cancers. Oncology. 1999 Jul;57(1):42–49. doi: 10.1159/000011999. [DOI] [PubMed] [Google Scholar]
- Su L. K., Vogelstein B., Kinzler K. W. Association of the APC tumor suppressor protein with catenins. Science. 1993 Dec 10;262(5140):1734–1737. doi: 10.1126/science.8259519. [DOI] [PubMed] [Google Scholar]
- Tamura G., Ogasawara S., Nishizuka S., Sakata K., Maesawa C., Suzuki Y., Terashima M., Saito K., Satodate R. Two distinct regions of deletion on the long arm of chromosome 5 in differentiated adenocarcinomas of the stomach. Cancer Res. 1996 Feb 1;56(3):612–615. [PubMed] [Google Scholar]
- Vogelstein B., Fearon E. R., Hamilton S. R., Kern S. E., Preisinger A. C., Leppert M., Nakamura Y., White R., Smits A. M., Bos J. L. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988 Sep 1;319(9):525–532. doi: 10.1056/NEJM198809013190901. [DOI] [PubMed] [Google Scholar]
- Watanabe M., Asaka M., Tanaka J., Kurosawa M., Kasai M., Miyazaki T. Point mutation of K-ras gene codon 12 in biliary tract tumors. Gastroenterology. 1994 Oct;107(4):1147–1153. doi: 10.1016/0016-5085(94)90240-2. [DOI] [PubMed] [Google Scholar]
- Wistuba I. I., Sugio K., Hung J., Kishimoto Y., Virmani A. K., Roa I., Albores-Saavedra J., Gazdar A. F. Allele-specific mutations involved in the pathogenesis of endemic gallbladder carcinoma in Chile. Cancer Res. 1995 Jun 15;55(12):2511–2515. [PubMed] [Google Scholar]
- Yanagisawa A., Ohtake K., Ohashi K., Hori M., Kitagawa T., Sugano H., Kato Y. Frequent c-Ki-ras oncogene activation in mucous cell hyperplasias of pancreas suffering from chronic inflammation. Cancer Res. 1993 Mar 1;53(5):953–956. [PubMed] [Google Scholar]
- Yoshida S., Todoroki T., Ichikawa Y., Hanai S., Suzuki H., Hori M., Fukao K., Miwa M., Uchida K. Mutations of p16Ink4/CDKN2 and p15Ink4B/MTS2 genes in biliary tract cancers. Cancer Res. 1995 Jul 1;55(13):2756–2760. [PubMed] [Google Scholar]