Abstract
BACKGROUND—Standard non-steroidal anti-inflammatory drugs (NSAIDs) reduce the risk of colorectal cancer by 40-60% but the mechanism by which this occurs is uncertain. Selective cyclooxygenase 2 inhibitors are potentially ideal chemopreventive agents as they are less toxic than standard NSAIDs. No study has compared the efficacy of these drugs at clinically relevant doses in a tumour model. AIMS—To assess the efficacy of a range of NSAIDs with varying activity against the two cyclooxygenase isoforms in a rodent colorectal carcinogen model at anti-inflammatory doses and to explore the effect of NSAIDs on the rate of tumour apoptosis and proliferation. METHODS—Colorectal tumours were induced in six week old Sprague-Dawley rats with five weekly doses of 1,2 dimethylhydrazine. Test agents were: indomethacin 2 mg/kg/day, meloxicam 0.6 mg/kg/day, celecoxib 6 mg/kg/day, and sulindac sulphone 40 mg/kg/day. Sulindac was tested at its chemoprotective dose of 20 mg/kg/day. After 23 weeks the number and volume of tumours per animal were recorded. Histology was performed. Tumour apoptosis was quantified on haematoxylin-eosin sections. Tumour proliferation was quantified using an immunohistochemical stain for bromodexoyuridine incorporation. RESULTS—Test agents effectively reduced the number and volume of tumours developing in the treatment period. In all groups there was an increase in the rate of tumour apoptosis and a reduced rate of proliferation. CONCLUSIONS—These data suggest that the chemopreventive effect of NSAIDs is independent of their cyclooxygenase inhibitory profile. One potential mechanism for their action may be through induction of apoptosis and inhibition of proliferation. Keywords: non-steroidal anti-inflammatory drugs; chemoprevention; colorectal cancer; apoptosis; bromodexoyuridine
Full Text
The Full Text of this article is available as a PDF (178.7 KB).
Figure 1 .
Photomicrograph of rodent colorectal tumour (×1000 magnification; oil emersion). Apoptotic tumour cells were recognised by their shrunken size, loss of contact with surrounding tissue (at times forming the classically described halo), and nuclear condensation. Arrows indicate examples of apoptotic tumour cells.
Figure 2 .
Mean (SEM) number of tumours developing per animal over 23 weeks was significantly reduced compared with control animals in all treatment groups. *p<0.05.
Figure 3 .
Mean (SEM) volume of tumour (tumour load) developing per animal over 23 weeks was significantly reduced compared with control animals in all treatment groups. *p<0.05.
Figure 4 .
Mean (SEM) rate of apoptosis per tumour in all treatments was increased compared with the mean rate of apoptosis per tumour in control animals. Within treatment groups there was no significant difference in the mean rates of apoptosis according to their histology.
Figure 5 .
Mean (SEM) rate of cells in the S phase (proliferation index) per tumour in all treatments was decreased compared with the mean proliferation index per tumour in control animals. Within treatment groups, there was no significant difference in the mean proliferation index according to their histology.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Australian Gastroenterology Week 1999. Brisbane, Australia, 4-8 October 1999. Abstracts. J Gastroenterol Hepatol. 1999 Oct;14 (Suppl):A107–A223. [PubMed] [Google Scholar]
- Baeg G. H., Matsumine A., Kuroda T., Bhattacharjee R. N., Miyashiro I., Toyoshima K., Akiyama T. The tumour suppressor gene product APC blocks cell cycle progression from G0/G1 to S phase. EMBO J. 1995 Nov 15;14(22):5618–5625. doi: 10.1002/j.1460-2075.1995.tb00249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bedi A., Pasricha P. J., Akhtar A. J., Barber J. P., Bedi G. C., Giardiello F. M., Zehnbauer B. A., Hamilton S. R., Jones R. J. Inhibition of apoptosis during development of colorectal cancer. Cancer Res. 1995 May 1;55(9):1811–1816. [PubMed] [Google Scholar]
- Chan T. A., Morin P. J., Vogelstein B., Kinzler K. W. Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):681–686. doi: 10.1073/pnas.95.2.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Charalambous D., Farmer C., O'Brien P. E. Sulindac and indomethacin inhibit formation of aberrant crypt foci in the colons of dimethyl hydrazine treated rats. J Gastroenterol Hepatol. 1996 Jan;11(1):88–92. doi: 10.1111/j.1440-1746.1996.tb00016.x. [DOI] [PubMed] [Google Scholar]
- Charalambous D., O'Brien P. E. Inhibition of colon cancer precursors in the rat by sulindac sulphone is not dependent on inhibition of prostaglandin synthesis. J Gastroenterol Hepatol. 1996 Apr;11(4):307–310. doi: 10.1111/j.1440-1746.1996.tb01376.x. [DOI] [PubMed] [Google Scholar]
- Charalambous D., Skinner S. A., O'Brien P. E. Sulindac inhibits colorectal tumour growth, but not prostaglandin synthesis in the rat. J Gastroenterol Hepatol. 1998 Dec;13(12):1195–1200. [PubMed] [Google Scholar]
- Chiu C. H., McEntee M. F., Whelan J. Sulindac causes rapid regression of preexisting tumors in Min/+ mice independent of prostaglandin biosynthesis. Cancer Res. 1997 Oct 1;57(19):4267–4273. [PubMed] [Google Scholar]
- Donnelly M. T., Hawkey C. J. Review article: COX-II inhibitors--a new generation of safer NSAIDs? Aliment Pharmacol Ther. 1997 Apr;11(2):227–236. doi: 10.1046/j.1365-2036.1997.154330000.x. [DOI] [PubMed] [Google Scholar]
- DuBois R. N., Radhika A., Reddy B. S., Entingh A. J. Increased cyclooxygenase-2 levels in carcinogen-induced rat colonic tumors. Gastroenterology. 1996 Apr;110(4):1259–1262. doi: 10.1053/gast.1996.v110.pm8613017. [DOI] [PubMed] [Google Scholar]
- Elder D. J., Halton D. E., Hague A., Paraskeva C. Induction of apoptotic cell death in human colorectal carcinoma cell lines by a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug: independence from COX-2 protein expression. Clin Cancer Res. 1997 Oct;3(10):1679–1683. [PubMed] [Google Scholar]
- Gierse J. K., Hauser S. D., Creely D. P., Koboldt C., Rangwala S. H., Isakson P. C., Seibert K. Expression and selective inhibition of the constitutive and inducible forms of human cyclo-oxygenase. Biochem J. 1995 Jan 15;305(Pt 2):479–484. doi: 10.1042/bj3050479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gustafson-Svärd C., Lilja I., Hallbök O., Sjödahl R. Cyclooxygenase-1 and cyclooxygenase-2 gene expression in human colorectal adenocarcinomas and in azoxymethane induced colonic tumours in rats. Gut. 1996 Jan;38(1):79–84. doi: 10.1136/gut.38.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall P. A., Coates P. J., Ansari B., Hopwood D. Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci. 1994 Dec;107(Pt 12):3569–3577. doi: 10.1242/jcs.107.12.3569. [DOI] [PubMed] [Google Scholar]
- Hanif R., Pittas A., Feng Y., Koutsos M. I., Qiao L., Staiano-Coico L., Shiff S. I., Rigas B. Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem Pharmacol. 1996 Jul 26;52(2):237–245. doi: 10.1016/0006-2952(96)00181-5. [DOI] [PubMed] [Google Scholar]
- He T. C., Sparks A. B., Rago C., Hermeking H., Zawel L., da Costa L. T., Morin P. J., Vogelstein B., Kinzler K. W. Identification of c-MYC as a target of the APC pathway. Science. 1998 Sep 4;281(5382):1509–1512. doi: 10.1126/science.281.5382.1509. [DOI] [PubMed] [Google Scholar]
- Hull M. A., Booth J. K., Tisbury A., Scott N., Bonifer C., Markham A. F., Coletta P. L. Cyclooxygenase 2 is up-regulated and localized to macrophages in the intestine of Min mice. Br J Cancer. 1999 Mar;79(9-10):1399–1405. doi: 10.1038/sj.bjc.6690224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jayadev S., Liu B., Bielawska A. E., Lee J. Y., Nazaire F., Pushkareva MYu, Obeid L. M., Hannun Y. A. Role for ceramide in cell cycle arrest. J Biol Chem. 1995 Feb 3;270(5):2047–2052. doi: 10.1074/jbc.270.5.2047. [DOI] [PubMed] [Google Scholar]
- Kargman S. L., O'Neill G. P., Vickers P. J., Evans J. F., Mancini J. A., Jothy S. Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer. Cancer Res. 1995 Jun 15;55(12):2556–2559. [PubMed] [Google Scholar]
- Kargman S., Wong E., Greig G. M., Falgueyret J. P., Cromlish W., Ethier D., Yergey J. A., Riendeau D., Evans J. F., Kennedy B. Mechanism of selective inhibition of human prostaglandin G/H synthase-1 and -2 in intact cells. Biochem Pharmacol. 1996 Oct 11;52(7):1113–1125. doi: 10.1016/0006-2952(96)00462-5. [DOI] [PubMed] [Google Scholar]
- Karmali R. A. Eicosanoids in neoplasia. Prev Med. 1987 Jul;16(4):493–502. doi: 10.1016/0091-7435(87)90063-6. [DOI] [PubMed] [Google Scholar]
- Kawamori T., Rao C. V., Seibert K., Reddy B. S. Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Res. 1998 Feb 1;58(3):409–412. [PubMed] [Google Scholar]
- Kune G. A., Kune S., Watson L. F. Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne Colorectal Cancer Study. Cancer Res. 1988 Aug 1;48(15):4399–4404. [PubMed] [Google Scholar]
- Labayle D., Fischer D., Vielh P., Drouhin F., Pariente A., Bories C., Duhamel O., Trousset M., Attali P. Sulindac causes regression of rectal polyps in familial adenomatous polyposis. Gastroenterology. 1991 Sep;101(3):635–639. doi: 10.1016/0016-5085(91)90519-q. [DOI] [PubMed] [Google Scholar]
- Laneuville O., Breuer D. K., Dewitt D. L., Hla T., Funk C. D., Smith W. L. Differential inhibition of human prostaglandin endoperoxide H synthases-1 and -2 by nonsteroidal anti-inflammatory drugs. J Pharmacol Exp Ther. 1994 Nov;271(2):927–934. [PubMed] [Google Scholar]
- Lim H., Paria B. C., Das S. K., Dinchuk J. E., Langenbach R., Trzaskos J. M., Dey S. K. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell. 1997 Oct 17;91(2):197–208. doi: 10.1016/s0092-8674(00)80402-x. [DOI] [PubMed] [Google Scholar]
- Maltzman T., Whittington J., Driggers L., Stephens J., Ahnen D. AOM-induced mouse colon tumors do not express full-length APC protein. Carcinogenesis. 1997 Dec;18(12):2435–2439. doi: 10.1093/carcin/18.12.2435. [DOI] [PubMed] [Google Scholar]
- Markowitz S., Wang J., Myeroff L., Parsons R., Sun L., Lutterbaugh J., Fan R. S., Zborowska E., Kinzler K. W., Vogelstein B. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995 Jun 2;268(5215):1336–1338. doi: 10.1126/science.7761852. [DOI] [PubMed] [Google Scholar]
- Masferrer J. L., Isakson P. C., Seibert K. Cyclooxygenase-2 inhibitors: a new class of anti-inflammatory agents that spare the gastrointestinal tract. Gastroenterol Clin North Am. 1996 Jun;25(2):363–372. doi: 10.1016/s0889-8553(05)70252-1. [DOI] [PubMed] [Google Scholar]
- Meade E. A., Smith W. L., DeWitt D. L. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem. 1993 Mar 25;268(9):6610–6614. [PubMed] [Google Scholar]
- Mitchell J. A., Akarasereenont P., Thiemermann C., Flower R. J., Vane J. R. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11693–11697. doi: 10.1073/pnas.90.24.11693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morham S. G., Langenbach R., Loftin C. D., Tiano H. F., Vouloumanos N., Jennette J. C., Mahler J. F., Kluckman K. D., Ledford A., Lee C. A. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell. 1995 Nov 3;83(3):473–482. doi: 10.1016/0092-8674(95)90125-6. [DOI] [PubMed] [Google Scholar]
- Oshima M., Dinchuk J. E., Kargman S. L., Oshima H., Hancock B., Kwong E., Trzaskos J. M., Evans J. F., Taketo M. M. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell. 1996 Nov 29;87(5):803–809. doi: 10.1016/s0092-8674(00)81988-1. [DOI] [PubMed] [Google Scholar]
- Patoia L., Santucci L., Furno P., Dionisi M. S., Dell'Orso S., Romagnoli M., Sattarinia A., Marini M. G. A 4-week, double-blind, parallel-group study to compare the gastrointestinal effects of meloxicam 7.5 mg, meloxicam 15 mg, piroxicam 20 mg and placebo by means of faecal blood loss, endoscopy and symptom evaluation in healthy volunteers. Br J Rheumatol. 1996 Apr;35 (Suppl 1):61–67. doi: 10.1093/rheumatology/35.suppl_1.61. [DOI] [PubMed] [Google Scholar]
- Piazza G. A., Rahm A. L., Krutzsch M., Sperl G., Paranka N. S., Gross P. H., Brendel K., Burt R. W., Alberts D. S., Pamukcu R. Antineoplastic drugs sulindac sulfide and sulfone inhibit cell growth by inducing apoptosis. Cancer Res. 1995 Jul 15;55(14):3110–3116. [PubMed] [Google Scholar]
- Picot D., Loll P. J., Garavito R. M. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nature. 1994 Jan 20;367(6460):243–249. doi: 10.1038/367243a0. [DOI] [PubMed] [Google Scholar]
- Reddy B. S., Rao C. V., Seibert K. Evaluation of cyclooxygenase-2 inhibitor for potential chemopreventive properties in colon carcinogenesis. Cancer Res. 1996 Oct 15;56(20):4566–4569. [PubMed] [Google Scholar]
- Samaha H. S., Hamid R., el-Bayoumy K., Rao C. V., Reddy B. S. The role of apoptosis in the modulation of colon carcinogenesis by dietary fat and by the organoselenium compound 1,4-phenylenebis(methylene)selenocyanate. Cancer Epidemiol Biomarkers Prev. 1997 Sep;6(9):699–704. [PubMed] [Google Scholar]
- Samaha H. S., Kelloff G. J., Steele V., Rao C. V., Reddy B. S. Modulation of apoptosis by sulindac, curcumin, phenylethyl-3-methylcaffeate, and 6-phenylhexyl isothiocyanate: apoptotic index as a biomarker in colon cancer chemoprevention and promotion. Cancer Res. 1997 Apr 1;57(7):1301–1305. [PubMed] [Google Scholar]
- Sano H., Kawahito Y., Wilder R. L., Hashiramoto A., Mukai S., Asai K., Kimura S., Kato H., Kondo M., Hla T. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res. 1995 Sep 1;55(17):3785–3789. [PubMed] [Google Scholar]
- Sheng H., Shao J., Hooton E. B., Tsujii M., DuBois R. N., Beauchamp R. D. Cyclooxygenase-2 induction and transforming growth factor beta growth inhibition in rat intestinal epithelial cells. Cell Growth Differ. 1997 Apr;8(4):463–470. [PubMed] [Google Scholar]
- Skinner S. A., Penney A. G., O'Brien P. E. Sulindac inhibits the rate of growth and appearance of colon tumors in the rat. Arch Surg. 1991 Sep;126(9):1094–1096. doi: 10.1001/archsurg.1991.01410330048007. [DOI] [PubMed] [Google Scholar]
- Strauss M., Lukas J., Bartek J. Unrestricted cell cycling and cancer. Nat Med. 1995 Dec;1(12):1245–1246. doi: 10.1038/nm1295-1245. [DOI] [PubMed] [Google Scholar]
- Takahashi M., Fukuda K., Sugimura T., Wakabayashi K. Beta-catenin is frequently mutated and demonstrates altered cellular location in azoxymethane-induced rat colon tumors. Cancer Res. 1998 Jan 1;58(1):42–46. [PubMed] [Google Scholar]
- Takahashi M., Fukutake M., Yokota S., Ishida K., Wakabayashi K., Sugimura T. Suppression of azoxymethane-induced aberrant crypt foci in rat colon by nimesulide, a selective inhibitor of cyclooxygenase 2. J Cancer Res Clin Oncol. 1996;122(4):219–222. doi: 10.1007/BF01209649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vane J. R., Botting R. M. Mechanism of action of antiinflammatory drugs. Int J Tissue React. 1998;20(1):3–15. [PubMed] [Google Scholar]
- Weiss H., Jacobasch K. H., Haensch W., Streller B., Hieke B. Significance of apoptosis in the process of tumorigenesis in colorectal mucosa and adenomas in FAP patients. Anal Cell Pathol. 1997;14(2):61–73. doi: 10.1155/1997/353862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams C. S., Luongo C., Radhika A., Zhang T., Lamps L. W., Nanney L. B., Beauchamp R. D., DuBois R. N. Elevated cyclooxygenase-2 levels in Min mouse adenomas. Gastroenterology. 1996 Oct;111(4):1134–1140. doi: 10.1016/s0016-5085(96)70083-5. [DOI] [PubMed] [Google Scholar]
- Yoshimi N., Kawabata K., Hara A., Matsunaga K., Yamada Y., Mori H. Inhibitory effect of NS-398, a selective cyclooxygenase-2 inhibitor, on azoxymethane-induced aberrant crypt foci in colon carcinogenesis of F344 rats. Jpn J Cancer Res. 1997 Nov;88(11):1044–1051. doi: 10.1111/j.1349-7006.1997.tb00328.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshimi N., Shimizu M., Matsunaga K., Yamada Y., Fujii K., Hara A., Mori H. Chemopreventive effect of N-(2-cyclohexyloxy-4-nitrophenyl)methane sulfonamide (NS-398), a selective cyclooxygenase-2 inhibitor, in rat colon carcinogenesis induced by azoxymethane. Jpn J Cancer Res. 1999 Apr;90(4):406–412. doi: 10.1111/j.1349-7006.1999.tb00762.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang J., Alter N., Reed J. C., Borner C., Obeid L. M., Hannun Y. A. Bcl-2 interrupts the ceramide-mediated pathway of cell death. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5325–5328. doi: 10.1073/pnas.93.11.5325. [DOI] [PMC free article] [PubMed] [Google Scholar]





