Skip to main content
Gut logoLink to Gut
. 2001 Dec;49(6):835–842. doi: 10.1136/gut.49.6.835

Bile acid metabolism by fresh human colonic contents: a comparison of caecal versus faecal samples

L Thomas 1, M Veysey 1, G French 1, P Hylemon 1, G Murphy 1, R Dowling 1
PMCID: PMC1728526  PMID: 11709519

Abstract

BACKGROUND—Deoxycholic acid (DCA), implicated in the pathogenesis of gall stones and colorectal cancer, is mainly formed by bacterial deconjugation (cholylglycine hydrolase (CGH)) and 7α-dehydroxylation (7α-dehydroxylase (7α-DH)) of conjugated cholic acid (CA) in the caecum/proximal colon. Despite this, most previous studies of CGH and 7α-DH have been in faeces rather than in caecal contents. In bacteria, CA increases 7α-DH activity by substrate-enzyme induction but little is known about CA concentrations or CA/7α-DH induction in the human colon.
AIMS AND METHODS—Therefore, in fresh "faeces", and in caecal aspirates obtained during colonoscopy from 20 patients, we: (i) compared the activities of CGH and 7α-DH, (ii) measured 7α-DH in patients with "low" and "high" percentages of DCA in fasting serum (less than and greater than the median), (iii) studied CA concentrations in the right and left halves of the colon, and examined the relationships between (iv) 7α-DH activity and CA concentration in caecal samples (evidence of substrate-enzyme induction), and (v) 7α-DH and per cent DCA in serum.
RESULTS—Although mean CGH activity in the proximal colon (18.3 (SEM 4.40) ×10−2 U/mg protein) was comparable with that in "faeces" (16.0 (4.10) ×10− 2 U/mg protein) , mean 7α-DH in the caecum (8.54 (1.08) ×10-4 U/mg protein) was higher (p<0.05) than that in the left colon (5.72 (0.85) ×10-4 U/mg protein). At both sites, 7α-DH was significantly greater in the "high" than in the "low" serum DCA subgroups. CA concentrations in the right colon (0.94 (0.08) µmol/ml) were higher than those in the left (0.09 (0.03) µmol/ml; p<0.001) while in the caecum (but not in the faeces) there was a weak (r=0.58) but significant (p<0.005) linear relationship between 7α-DH and CA concentration. At both sites, 7α-DH was linearly related (p<0.005) to per cent DCA in serum.
INTERPRETATION/SUMMARY—These results: (i) confirm that there are marked regional differences in bile acid metabolism between the right and left halves of the colon, (ii) suggest that caecal and faecal 7α-DH influence per cent DCA in serum (and, by inference, in bile), and (iii) show that the substrate CA induces the enzyme 7α-DH in the caecum.


Keywords: deoxycholic acid; 7α-dehydroxylation; gall stones; colorectal cancer

Full Text

The Full Text of this article is available as a PDF (226.0 KB).

Figure 1  .

Figure 1  

Paired results for cholylglycine hydrolase activity in "caecal" and faecal samples: individual data points with means (SEM).

Figure 2  .

Figure 2  

Paired results for 7α-dehydroxylase activity in the "caecal" and faecal samples: individual data points with means (SEM).

Figure 3  .

Figure 3  

Paired results linking "caecal" and faecal 7α-dehydroxylase activities in the low (A) versus high (B) serum deoxycholic acid (DCA) subgroups: individual data points with means (SEM).

Figure 4  .

Figure 4  

Non-paired results comparing "caecal" (A) and faecal (B) 7α-dehydroxylase activities in the low versus high serum deoxycholic acid (DCA) subgroups: individual data points with means (SEM).

Figure 5  .

Figure 5  

Endogenous cholic acid concentrations in paired "caecal" and faecal samples: individual data points with means (SEM).

Figure 6  .

Figure 6  

Relationship between 7α-dehydroxylase activity and cholic acid concentration in the "caecal" samples.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlberg J., Angelin B., Björkhem I., Einarsson K. Individual bile acids in portal venous and systemic blood serum of fasting man. Gastroenterology. 1977 Dec;73(6):1377–1382. [PubMed] [Google Scholar]
  2. Aries V., Crowther J. S., Drasar B. S., Hill M. J. Degradation of bile salts by human intestinal bacteria. Gut. 1969 Jul;10(7):575–576. doi: 10.1136/gut.10.7.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bentley D. W., Nichols R. L., Condon R. E., Gorbach S. L. The microflora of the human ileum and intrabdominal colon: results of direct needle aspiration at surgery and evaluation of the technique. J Lab Clin Med. 1972 Mar;79(3):421–429. [PubMed] [Google Scholar]
  4. Berr F., Kullak-Ublick G. A., Paumgartner G., Münzing W., Hylemon P. B. 7 alpha-dehydroxylating bacteria enhance deoxycholic acid input and cholesterol saturation of bile in patients with gallstones. Gastroenterology. 1996 Dec;111(6):1611–1620. doi: 10.1016/s0016-5085(96)70024-0. [DOI] [PubMed] [Google Scholar]
  5. Bruusgaard A. Quantitative determination of the major 3-hydroxy bile acids in biological material after thin-layer chromatographic separation. Clin Chim Acta. 1970 Jun;28(3):495–504. doi: 10.1016/0009-8981(70)90078-1. [DOI] [PubMed] [Google Scholar]
  6. Doerner K. C., Takamine F., LaVoie C. P., Mallonee D. H., Hylemon P. B. Assessment of fecal bacteria with bile acid 7 alpha-dehydroxylating activity for the presence of bai-like genes. Appl Environ Microbiol. 1997 Mar;63(3):1185–1188. doi: 10.1128/aem.63.3.1185-1188.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ENEROTH P. THIN-LAYER CHROMATOGRAPHY OF BILE ACIDS. J Lipid Res. 1963 Jan;4:11–16. [PubMed] [Google Scholar]
  8. Evans D. F., Pye G., Bramley R., Clark A. G., Dyson T. J., Hardcastle J. D. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut. 1988 Aug;29(8):1035–1041. doi: 10.1136/gut.29.8.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fallingborg J., Christensen L. A., Ingeman-Nielsen M., Jacobsen B. A., Abildgaard K., Rasmussen H. H. pH-profile and regional transit times of the normal gut measured by a radiotelemetry device. Aliment Pharmacol Ther. 1989 Dec;3(6):605–613. doi: 10.1111/j.1365-2036.1989.tb00254.x. [DOI] [PubMed] [Google Scholar]
  10. GUSTAFSSON B. E., BERGSTROM S., LINDSTEDT S., NORMAN A. Turnover and nature of fecal bile acids in germfree and infected rats fed cholic acid-24-14C; bile acids and steroids 41. Proc Soc Exp Biol Med. 1957 Mar;94(3):467–471. doi: 10.3181/00379727-94-22981. [DOI] [PubMed] [Google Scholar]
  11. Goto J., Watanabe K., Miura H., Nambara T., Iida T. Studies on steroids. CCXXVIII Trace analysis of bile acids by gas chromatography-mass spectrometry with negative ion chemical ionization detection. J Chromatogr. 1987 Feb 13;388(2):379–387. doi: 10.1016/s0021-9673(01)94498-x. [DOI] [PubMed] [Google Scholar]
  12. Gustafsson B. E., Midtvedt T., Norman A. Isolated fecal microorganisms capable of 7-alpha-dehydroxylating bile acids. J Exp Med. 1966 Feb 1;123(2):413–432. doi: 10.1084/jem.123.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hill M. J., Drasar B. S. Degradation of bile salts by human intestinal bacteria. Gut. 1968 Feb;9(1):22–27. doi: 10.1136/gut.9.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lindor K. D., Lacerda M. A., Jorgensen R. A., DeSotel C. K., Batta A. K., Salen G., Dickson E. R., Rossi S. S., Hofmann A. F. Relationship between biliary and serum bile acids and response to ursodeoxycholic acid in patients with primary biliary cirrhosis. Am J Gastroenterol. 1998 Sep;93(9):1498–1504. doi: 10.1111/j.1572-0241.1998.00470.x. [DOI] [PubMed] [Google Scholar]
  15. Low-Beer T. S., Nutter S. Colonic bacterial activity, biliary cholesterol saturation, and pathogenesis of gallstones. Lancet. 1978 Nov 18;2(8099):1063–1065. doi: 10.1016/s0140-6736(78)91800-7. [DOI] [PubMed] [Google Scholar]
  16. Mallonee D. H., Adams J. L., Hylemon P. B. The bile acid-inducible baiB gene from Eubacterium sp. strain VPI 12708 encodes a bile acid-coenzyme A ligase. J Bacteriol. 1992 Apr;174(7):2065–2071. doi: 10.1128/jb.174.7.2065-2071.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marcus S. N., Heaton K. W. Intestinal transit, deoxycholic acid and the cholesterol saturation of bile--three inter-related factors. Gut. 1986 May;27(5):550–558. doi: 10.1136/gut.27.5.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McJunkin B., Fromm H., Sarva R. P., Amin P. Factors in the mechanism of diarrhea in bile acid malabsorption: fecal pH--a key determinant. Gastroenterology. 1981 Jun;80(6):1454–1464. [PubMed] [Google Scholar]
  19. Nagengast F. M., Hectors M. P., Buys W. A., van Tongeren J. H. Inhibition of secondary bile acid formation in the large intestine by lactulose in healthy subjects of two different age groups. Eur J Clin Invest. 1988 Feb;18(1):56–61. doi: 10.1111/j.1365-2362.1988.tb01166.x. [DOI] [PubMed] [Google Scholar]
  20. Nagengast F. M., van Munster I. P., Salemans J. M., Van der Werf S. D. Deoxycholic acid metabolism in patients with adenomas. Gastroenterology. 1993 Sep;105(3):955–956. doi: 10.1016/0016-5085(93)90930-b. [DOI] [PubMed] [Google Scholar]
  21. Nair P. P., Gordon M., Reback J. The enzymatic cleavage of the carbon-nitrogen bond in 3-alpha, 7-alpha, 12-alpha-trihydroxy-5-beta-cholan-24-oylglycine. J Biol Chem. 1967 Jan 10;242(1):7–11. [PubMed] [Google Scholar]
  22. Newcomer A. D., McGill D. B. Distribution of disaccharidase activity in the small bowel of normal and lactase-deficient subjects. Gastroenterology. 1966 Oct;51(4):481–488. [PubMed] [Google Scholar]
  23. Northfield T. C., McColl I. Postprandial concentrations of free and conjugated bile acids down the length of the normal human small intestine. Gut. 1973 Jul;14(7):513–518. doi: 10.1136/gut.14.7.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rodrigues C. M., Setchell K. D. Performance characteristics of reversed-phase bonded silica cartridges for serum bile acid extraction. Biomed Chromatogr. 1996 Jan-Feb;10(1):1–5. doi: 10.1002/(SICI)1099-0801(199601)10:1<1::AID-BMC536>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  25. Samuel P., Saypoi G. M., Meilman E., Mosbach E. H., Chafizadeh M. Absorption of bile acids from the large bowel in man. J Clin Invest. 1968 Sep;47(9):2070–2078. doi: 10.1172/JCI105892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Setchell K. D., Matsui A. Serum bile acid analysis. Clin Chim Acta. 1983 Jan 7;127(1):1–17. doi: 10.1016/0009-8981(83)90070-0. [DOI] [PubMed] [Google Scholar]
  27. Stellaard F., Langelaar S. A., Kok R. M., Jakobs C. Determination of plasma bile acids by capillary gas-liquid chromatography-electron capture negative chemical ionization mass fragmentography. J Lipid Res. 1989 Oct;30(10):1647–1652. [PubMed] [Google Scholar]
  28. Stellwag E. J., Hylemon P. B. 7alpha-Dehydroxylation of cholic acid and chenodeoxycholic acid by Clostridium leptum. J Lipid Res. 1979 Mar;20(3):325–333. [PubMed] [Google Scholar]
  29. Thomas L. A., King A., French G. L., Murphy G. M., Dowling R. H. Cholylglycine hydrolase and 7alpha-dehydroxylase optimum assay conditions in vitro and caecal enzyme activities ex vivo. Clin Chim Acta. 1997 Dec 10;268(1-2):61–72. doi: 10.1016/s0009-8981(97)00169-1. [DOI] [PubMed] [Google Scholar]
  30. Thomas L. A., Veysey M. J., Bathgate T., King A., French G., Smeeton N. C., Murphy G. M., Dowling R. H. Mechanism for the transit-induced increase in colonic deoxycholic acid formation in cholesterol cholelithiasis. Gastroenterology. 2000 Sep;119(3):806–815. doi: 10.1053/gast.2000.16495. [DOI] [PubMed] [Google Scholar]
  31. Thornton J. R., Heaton K. W. Do colonic bacteria contribute to cholesterol gall-stone formation? Effects of lactulose on bile. Br Med J (Clin Res Ed) 1981 Mar 28;282(6269):1018–1020. doi: 10.1136/bmj.282.6269.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Torsoli A., Ramorino M. L., Ammaturo M. V., Capurso L., Paoluzi P., Anzini F. Mass movements and intracolonic pressures. Am J Dig Dis. 1971 Aug;16(8):693–696. doi: 10.1007/BF02239591. [DOI] [PubMed] [Google Scholar]
  33. Veysey M. J., Malcolm P., Mallet A. I., Jenkins P. J., Besser G. M., Murphy G. M., Dowling R. H. Effects of cisapride on gall bladder emptying, intestinal transit, and serum deoxycholate: a prospective, randomised, double blind, placebo controlled trial. Gut. 2001 Dec;49(6):828–834. doi: 10.1136/gut.49.6.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Veysey M. J., Thomas L. A., Mallet A. I., Jenkins P. J., Besser G. M., Murphy G. M., Dowling R. H. Colonic transit influences deoxycholic acid kinetics. Gastroenterology. 2001 Oct;121(4):812–822. doi: 10.1053/gast.2001.28015. [DOI] [PubMed] [Google Scholar]
  35. White B. A., Lipsky R. L., Fricke R. J., Hylemon P. B. Bile acid induction specificity of 7 alpha-dehydroxylase activity in an intestinal Eubacterium species. Steroids. 1980 Jan;35(1):103–109. doi: 10.1016/0039-128x(80)90115-4. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES