Skip to main content
Heart logoLink to Heart
. 1998 Jan;79(1):56–58. doi: 10.1136/hrt.79.1.56

Relation between bradycardia dependent long QT syndrome and QT prolongation by disopyramide in humans

H Furushima 1, S Niwano 1, M Chinushi 1, K Ohhira 1, A Abe 1, Y Aizawa 1
PMCID: PMC1728587  PMID: 9505920

Abstract

Background—Recent molecular biological investigations have identified abnormal genes in familial forms of long QT syndrome, but in bradycardia dependent acquired long QT syndrome, no such genetic abnormality has yet been identified.
Objective—To investigate the relation between the responses of QT interval to pacing change and to disopyramide.
Methods—This study included 13 patients with bradyarrhythmia who had undergone pacemaker implantation. The patients were divided into two groups: group I (n = 8), patients with QT prolongation (QT interval ⩾ 500 ms) during bradycardia; group II (n = 5), patients without QT prolongation (QT interval < 500 ms) during bradycardia. The responses of QT interval caused by the change of pacing rate were determined and compared with the changes of the QT interval after disopyramide administration.
Results—The QT interval in group I was significantly longer than that in group II when the pacing rate was decreased from 110 to 50 beats/min: mean (SD) 451 (16) v 416 (17) ms at 90 beats/min (p = 0.0033), and 490 (19) v 432 (18) ms at 70 beats/min (p = 0.0002), respectively. The QT interval was prolonged significantly by disopyramide in both groups, but the change was more pronounced in group I than in group II: 78 (33) v 35 (10) ms (p < 0.05).
Conclusions—This study suggests that the patients showing bradycardia dependent QT prolongation are also more markedly affected by disopyramide and that abnormal potassium channel may be the underlying mechanism. 

 Keywords: bradycardia;  long QT syndrome;  disopyramide

Full Text

The Full Text of this article is available as a PDF (93.0 KB).

Figure 1  .

Figure 1  

The QT interval responses to different pacing rates in a patient in group I. The pacing rate was decreased from 110 to 50 beats/min and the QT interval was measured, which was prolonged from 440 to 550 ms.

Figure 2  .

Figure 2  

QT prolongation induced by disopyramide in each group. The QT interval was prolonged after disopyramide administration in both groups. The change of the QT interval induced by disopyramide was more pronounced in group I. 

Figure 3  .

Figure 3  

Change of the QT interval induced by disopyramide in patients with QT interval prolongation during bradycardia (group I). The net change of the QT interval is 90 ms.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aizawa Y., Washizuka T., Igarashi Y., Kitazawa H., Chinushi M., Abe A., Shibata A. Acetylcholine-induced prolongation of the QT interval in idiopathic long QT syndrome. Am J Cardiol. 1996 Apr 15;77(10):879–882. doi: 10.1016/s0002-9149(97)89189-8. [DOI] [PubMed] [Google Scholar]
  2. Balser J. R., Roden D. M., Bennett P. B. Single inward rectifier potassium channels in guinea pig ventricular myocytes. Effects of quinidine. Biophys J. 1991 Jan;59(1):150–161. doi: 10.1016/S0006-3495(91)82207-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brachmann J., Scherlag B. J., Rosenshtraukh L. V., Lazzara R. Bradycardia-dependent triggered activity: relevance to drug-induced multiform ventricular tachycardia. Circulation. 1983 Oct;68(4):846–856. doi: 10.1161/01.cir.68.4.846. [DOI] [PubMed] [Google Scholar]
  4. Bursill J. A., Wyse K. R., Campbell T. J. Quinidine but not disopyramide prolongs cardiac Purkinje fiber action potentials after a pause. J Cardiovasc Pharmacol. 1994 May;23(5):833–837. doi: 10.1097/00005344-199405000-00021. [DOI] [PubMed] [Google Scholar]
  5. Carmeliet E., Saikawa T. Shortening of the action potential and reduction of pacemaker activity by lidocaine, quinidine, and procainamide in sheep cardiac purkinje fibers. An effect on Na or K currents? Circ Res. 1982 Feb;50(2):257–272. doi: 10.1161/01.res.50.2.257. [DOI] [PubMed] [Google Scholar]
  6. Curran M. E., Splawski I., Timothy K. W., Vincent G. M., Green E. D., Keating M. T. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995 Mar 10;80(5):795–803. doi: 10.1016/0092-8674(95)90358-5. [DOI] [PubMed] [Google Scholar]
  7. Hondeghem L. M., Snyders D. J. Class III antiarrhythmic agents have a lot of potential but a long way to go. Reduced effectiveness and dangers of reverse use dependence. Circulation. 1990 Feb;81(2):686–690. doi: 10.1161/01.cir.81.2.686. [DOI] [PubMed] [Google Scholar]
  8. Jackman W. M., Friday K. J., Anderson J. L., Aliot E. M., Clark M., Lazzara R. The long QT syndromes: a critical review, new clinical observations and a unifying hypothesis. Prog Cardiovasc Dis. 1988 Sep-Oct;31(2):115–172. doi: 10.1016/0033-0620(88)90014-x. [DOI] [PubMed] [Google Scholar]
  9. Jurkiewicz N. K., Sanguinetti M. C. Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent. Specific block of rapidly activating delayed rectifier K+ current by dofetilide. Circ Res. 1993 Jan;72(1):75–83. doi: 10.1161/01.res.72.1.75. [DOI] [PubMed] [Google Scholar]
  10. Keating M., Atkinson D., Dunn C., Timothy K., Vincent G. M., Leppert M. Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science. 1991 May 3;252(5006):704–706. doi: 10.1126/science.1673802. [DOI] [PubMed] [Google Scholar]
  11. Kurita T., Ohe T., Marui N., Aihara N., Takaki H., Kamakura S., Matsuhisa M., Shimomura K. Bradycardia-induced abnormal QT prolongation in patients with complete atrioventricular block with torsades de pointes. Am J Cardiol. 1992 Mar 1;69(6):628–633. doi: 10.1016/0002-9149(92)90154-q. [DOI] [PubMed] [Google Scholar]
  12. Roden D. M., Hoffman B. F. Action potential prolongation and induction of abnormal automaticity by low quinidine concentrations in canine Purkinje fibers. Relationship to potassium and cycle length. Circ Res. 1985 Jun;56(6):857–867. doi: 10.1161/01.res.56.6.857. [DOI] [PubMed] [Google Scholar]
  13. Roden D. M., Woosley R. L., Primm R. K. Incidence and clinical features of the quinidine-associated long QT syndrome: implications for patient care. Am Heart J. 1986 Jun;111(6):1088–1093. doi: 10.1016/0002-8703(86)90010-4. [DOI] [PubMed] [Google Scholar]
  14. Sanguinetti M. C., Jiang C., Curran M. E., Keating M. T. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell. 1995 Apr 21;81(2):299–307. doi: 10.1016/0092-8674(95)90340-2. [DOI] [PubMed] [Google Scholar]
  15. Smith W. M., Gallagher J. J. "Les torsades de pointes": an unusual ventricular arrhythmia. Ann Intern Med. 1980 Oct;93(4):578–584. doi: 10.7326/0003-4819-93-4-578. [DOI] [PubMed] [Google Scholar]
  16. Strasberg B., Kusniec J., Erdman S., Lewin R. F., Arditti A., Sclarovsky S., Agmon J. Polymorphous ventricular tachycardia and atrioventricular block. Pacing Clin Electrophysiol. 1986 Jul;9(4):522–526. doi: 10.1111/j.1540-8159.1986.tb06609.x. [DOI] [PubMed] [Google Scholar]
  17. Vincent G. M. Hypothesis for the molecular physiology of the Romano-Ward long QT syndrome. J Am Coll Cardiol. 1992 Aug;20(2):500–503. doi: 10.1016/0735-1097(92)90123-5. [DOI] [PubMed] [Google Scholar]
  18. Wang Q., Shen J., Splawski I., Atkinson D., Li Z., Robinson J. L., Moss A. J., Towbin J. A., Keating M. T. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995 Mar 10;80(5):805–811. doi: 10.1016/0092-8674(95)90359-3. [DOI] [PubMed] [Google Scholar]
  19. Wyse K. R., Ye V., Campbell T. J. Action potential prolongation exhibits simple dose-dependence for sotalol, but reverse dose-dependence for quinidine and disopyramide: implications for proarrhythmia due to triggered activity. J Cardiovasc Pharmacol. 1993 Feb;21(2):316–322. doi: 10.1097/00005344-199302000-00019. [DOI] [PubMed] [Google Scholar]
  20. Yang T., Roden D. M. Extracellular potassium modulation of drug block of IKr. Implications for torsade de pointes and reverse use-dependence. Circulation. 1996 Feb 1;93(3):407–411. doi: 10.1161/01.cir.93.3.407. [DOI] [PubMed] [Google Scholar]
  21. el-Sherif N., Bekheit S. S., Henkin R. Quinidine-induced long QTU interval and torsade de pointes: role of bradycardia-dependent early afterdepolarizations. J Am Coll Cardiol. 1989 Jul;14(1):252–257. doi: 10.1016/0735-1097(89)90082-x. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES