Skip to main content
Heart logoLink to Heart
. 1998 Mar;79(3):281–288. doi: 10.1136/hrt.79.3.281

Predictive value of dobutamine echocardiography and positron emission tomography in identifying hibernating myocardium in patients with postischaemic heart failure

D Pagano 1, R Bonser 1, J Townend 1, F Ordoubadi 1, R Lorenzoni 1, P Camici 1
PMCID: PMC1728621  PMID: 9602663

Abstract

Objective—To compare the predictive value of dobutamine echocardiography (DE) and positron emission tomography (PET) in identifying reversible chronic left ventricular (LV) dysfunction (hibernating myocardium) in patients with coronary artery disease (CAD) and overt heart failure.
Patients—30 patients (four women) with CAD and heart failure undergoing coronary artery bypass grafting (CABG).
Methods—Myocardial viability was assessed with DE (5 and 10 µg/kg/min) and PET with [18F] 2-fluoro-2-deoxy-D-glucose (FDG) under hyperinsulinaemic euglycaemic clamp. Regional (echo) and global LV function (MUGA) were assessed at baseline and six months after CABG.
Results—192 of the 336 (57%) dysfunctional LV segments improved function following CABG (hibernating) and the LV ejection fraction (EF) increased from 23(7) to 32(9)% (p < 0.0001) (in 17 patients > 5%). DE and PET had similar positive predictive values (68% and 66%) in the identification of hibernating myocardium, but DE had a significantly lower negative predictive value than PET (54% v 96%; p < 0.0001). A significant linear correlation was found between the number of PET viable segments and the changes in EF following CABG (r = 0.65; p = 0.0001). Stepwise logistic regression identified the number of PET viable segments as an independent predictor of improvement in EF > 5%, whereas the number of DE viable segments, the baseline LVEF, and wall motion were not.
Conclusions—DE has a higher false negative rate than PET in identifying recoverable LV dysfunction in patients with severe postischaemic heart failure. The amount of PET viable myocardium correlates with the functional outcome following CABG.

 Keywords: dobutamine echocardiography;  positron emission tomography;  coronary artery disease;  heart failure;  hibernating myocardium

Full Text

The Full Text of this article is available as a PDF (184.4 KB).

Figure 1  .

Figure 1  

(A) Positive and (B) negative predictive values of PET and DE in hypokinetic (Hypo) and akinetic (Aki) left ventricular segments. Note in particular that the negative predictive value of DE decreases in the more dysfunctional segments.

Figure 2  .

Figure 2  

Linear relation between the number of PET viable left ventricular segments and the changes in left ventricular ejection fraction (δ-EF) following coronary revascularisation.

Figure 3  .

Figure 3  

Linear relation between the number of dobutamine viable (DE) left ventricular segments and the changes in left ventricular ejection fraction (δ-EF) following coronary revascularisation.

Figure 4  .

Figure 4  

Comparison of overall sensitivity, specificity, and accuracy of PET and DE.

Figure 5  .

Figure 5  

ROC curves demonstrating the sensitivity-specificity pairs for the number of PET viable (solid line) and DE viable (broken line) segments required to obtain improvements in LVEF > 5% points following CABG. The arrows indicate the operator point for each test associated with the best trade-off between sensitivity and specificity. This was eight for PET (sensitivity 0.88, specificity 0.75) and seven for DE (sensitivity 0.47, specificity 0.91). Note the better performance of PET (area under the curve 0.75) compared with DE (area under the curve 0.69).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afridi I., Kleiman N. S., Raizner A. E., Zoghbi W. A. Dobutamine echocardiography in myocardial hibernation. Optimal dose and accuracy in predicting recovery of ventricular function after coronary angioplasty. Circulation. 1995 Feb 1;91(3):663–670. doi: 10.1161/01.cir.91.3.663. [DOI] [PubMed] [Google Scholar]
  2. Armstrong W. F. "Hibernating" myocardium: asleep or part dead? J Am Coll Cardiol. 1996 Aug;28(2):530–535. doi: 10.1016/0735-1097(96)00138-6. [DOI] [PubMed] [Google Scholar]
  3. Ausma J., Cleutjens J., Thoné F., Flameng W., Ramaekers F., Borgers M. Chronic hibernating myocardium: interstitial changes. Mol Cell Biochem. 1995 Jun 7;147(1-2):35–42. doi: 10.1007/BF00944781. [DOI] [PubMed] [Google Scholar]
  4. Baer F. M., Voth E., Deutsch H. J., Schneider C. A., Schicha H., Sechtem U. Assessment of viable myocardium by dobutamine transesophageal echocardiography and comparison with fluorine-18 fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 1994 Aug;24(2):343–353. doi: 10.1016/0735-1097(94)90286-0. [DOI] [PubMed] [Google Scholar]
  5. Bax J. J., Cornel J. H., Visser F. C., Fioretti P. M., van Lingen A., Reijs A. E., Boersma E., Teule G. J., Visser C. A. Prediction of recovery of myocardial dysfunction after revascularization. Comparison of fluorine-18 fluorodeoxyglucose/thallium-201 SPECT, thallium-201 stress-reinjection SPECT and dobutamine echocardiography. J Am Coll Cardiol. 1996 Sep;28(3):558–564. doi: 10.1016/0735-1097(96)00222-7. [DOI] [PubMed] [Google Scholar]
  6. Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–310. [PubMed] [Google Scholar]
  7. Bonow R. O. Identification of viable myocardium. Circulation. 1996 Dec 1;94(11):2674–2680. doi: 10.1161/01.cir.94.11.2674. [DOI] [PubMed] [Google Scholar]
  8. Bristow M. R., Ginsburg R., Minobe W., Cubicciotti R. S., Sageman W. S., Lurie K., Billingham M. E., Harrison D. C., Stinson E. B. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982 Jul 22;307(4):205–211. doi: 10.1056/NEJM198207223070401. [DOI] [PubMed] [Google Scholar]
  9. Camici P. G., Wijns W., Borgers M., De Silva R., Ferrari R., Knuuti J., Lammertsma A. A., Liedtke A. J., Paternostro G., Vatner S. F. Pathophysiological mechanisms of chronic reversible left ventricular dysfunction due to coronary artery disease (hibernating myocardium). Circulation. 1997 Nov 4;96(9):3205–3214. doi: 10.1161/01.cir.96.9.3205. [DOI] [PubMed] [Google Scholar]
  10. Camici P., Ferrannini E., Opie L. H. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis. 1989 Nov-Dec;32(3):217–238. doi: 10.1016/0033-0620(89)90027-3. [DOI] [PubMed] [Google Scholar]
  11. Castini D., Gentile F., Ornaghi M., Montani E., Lippolis A., Mangiarotti E., Esposti D., Cirino D., Maggi G. C. Dobutamine echocardiography: usefulness of digital image processing. Eur Heart J. 1995 Oct;16(10):1420–1424. doi: 10.1093/oxfordjournals.eurheartj.a060750. [DOI] [PubMed] [Google Scholar]
  12. Chen C., Li L., Chen L. L., Prada J. V., Chen M. H., Fallon J. T., Weyman A. E., Waters D., Gillam L. Incremental doses of dobutamine induce a biphasic response in dysfunctional left ventricular regions subtending coronary stenoses. Circulation. 1995 Aug 15;92(4):756–766. doi: 10.1161/01.cir.92.4.756. [DOI] [PubMed] [Google Scholar]
  13. Depré C., Vanoverschelde J. L., Melin J. A., Borgers M., Bol A., Ausma J., Dion R., Wijns W. Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Physiol. 1995 Mar;268(3 Pt 2):H1265–H1275. doi: 10.1152/ajpheart.1995.268.3.H1265. [DOI] [PubMed] [Google Scholar]
  14. Di Carli M. F., Davidson M., Little R., Khanna S., Mody F. V., Brunken R. C., Czernin J., Rokhsar S., Stevenson L. W., Laks H. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol. 1994 Mar 15;73(8):527–533. doi: 10.1016/0002-9149(94)90327-1. [DOI] [PubMed] [Google Scholar]
  15. Diamond G. A., Forrester J. S., deLuz P. L., Wyatt H. L., Swan H. J. Post-extrasystolic potentiation of ischemic myocardium by atrial stimulation. Am Heart J. 1978 Feb;95(2):204–209. doi: 10.1016/0002-8703(78)90464-7. [DOI] [PubMed] [Google Scholar]
  16. Dilsizian V., Bonow R. O. Current diagnostic techniques of assessing myocardial viability in patients with hibernating and stunned myocardium. Circulation. 1993 Jan;87(1):1–20. doi: 10.1161/01.cir.87.1.1. [DOI] [PubMed] [Google Scholar]
  17. Dreyfus G. D., Duboc D., Blasco A., Vigoni F., Dubois C., Brodaty D., de Lentdecker P., Bachet J., Goudot B., Guilmet D. Myocardial viability assessment in ischemic cardiomyopathy: benefits of coronary revascularization. Ann Thorac Surg. 1994 Jun;57(6):1402–1408. doi: 10.1016/0003-4975(94)90091-4. [DOI] [PubMed] [Google Scholar]
  18. Eitzman D., al-Aouar Z., Kanter H. L., vom Dahl J., Kirsh M., Deeb G. M., Schwaiger M. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol. 1992 Sep;20(3):559–565. doi: 10.1016/0735-1097(92)90008-b. [DOI] [PubMed] [Google Scholar]
  19. Ferguson J. J. American College of Cardiology 45th Annual Scientific Session, Orlando, Florida, March 24 to 27, 1996. Circulation. 1996 Jul 1;94(1):1–5. doi: 10.1161/01.cir.94.1.1. [DOI] [PubMed] [Google Scholar]
  20. Ferguson J. J. American College of Cardiology 45th Annual Scientific Session, Orlando, Florida, March 24 to 27, 1996. Circulation. 1996 Jul 1;94(1):1–5. doi: 10.1161/01.cir.94.1.1. [DOI] [PubMed] [Google Scholar]
  21. Gerber B. L., Vanoverschelde J. L., Bol A., Michel C., Labar D., Wijns W., Melin J. A. Myocardial blood flow, glucose uptake, and recruitment of inotropic reserve in chronic left ventricular ischemic dysfunction. Implications for the pathophysiology of chronic myocardial hibernation. Circulation. 1996 Aug 15;94(4):651–659. doi: 10.1161/01.cir.94.4.651. [DOI] [PubMed] [Google Scholar]
  22. Gioia G., Powers J., Heo J., Iskandrian A. S. Prognostic value of rest-redistribution tomographic thallium-201 imaging in ischemic cardiomyopathy. Am J Cardiol. 1995 Apr 15;75(12):759–762. doi: 10.1016/s0002-9149(99)80406-8. [DOI] [PubMed] [Google Scholar]
  23. Hochberg M. S., Parsonnet V., Gielchinsky I., Hussain S. M. Coronary artery bypass grafting in patients with ejection fractions below forty percent. Early and late results in 466 patients. J Thorac Cardiovasc Surg. 1983 Oct;86(4):519–527. [PubMed] [Google Scholar]
  24. Kaul S. There may be more to myocardial viability than meets the eye. Circulation. 1995 Nov 15;92(10):2790–2793. doi: 10.1161/01.cir.92.10.2790. [DOI] [PubMed] [Google Scholar]
  25. La Canna G., Alfieri O., Giubbini R., Gargano M., Ferrari R., Visioli O. Echocardiography during infusion of dobutamine for identification of reversibly dysfunction in patients with chronic coronary artery disease. J Am Coll Cardiol. 1994 Mar 1;23(3):617–626. doi: 10.1016/0735-1097(94)90745-5. [DOI] [PubMed] [Google Scholar]
  26. Lee K. S., Marwick T. H., Cook S. A., Go R. T., Fix J. S., James K. B., Sapp S. K., MacIntyre W. J., Thomas J. D. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation. 1994 Dec;90(6):2687–2694. doi: 10.1161/01.cir.90.6.2687. [DOI] [PubMed] [Google Scholar]
  27. Lenfant C. NHLBI funding policies. Enhancing stability, predictability, and cost control. Circulation. 1994 Jul;90(1):1–1. doi: 10.1161/01.cir.90.1.1. [DOI] [PubMed] [Google Scholar]
  28. Lucignani G., Landoni C., Mengozzi G., Palagi C., Paolini G., Zuccari M., Vanoli G., Biadi O., Mariani M. A., Mariani M. Relation between dobutamine trans-thoracic echocardiography, 99Tcm-MIBI and 18FDG uptake in chronic coronary artery disease. Nucl Med Commun. 1995 Jul;16(7):548–557. doi: 10.1097/00006231-199507000-00005. [DOI] [PubMed] [Google Scholar]
  29. Marinho N. V., Keogh B. E., Costa D. C., Lammerstma A. A., Ell P. J., Camici P. G. Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation. 1996 Feb 15;93(4):737–744. doi: 10.1161/01.cir.93.4.737. [DOI] [PubMed] [Google Scholar]
  30. Metz C. E. Basic principles of ROC analysis. Semin Nucl Med. 1978 Oct;8(4):283–298. doi: 10.1016/s0001-2998(78)80014-2. [DOI] [PubMed] [Google Scholar]
  31. Pagley P. R., Beller G. A., Watson D. D., Gimple L. W., Ragosta M. Improved outcome after coronary bypass surgery in patients with ischemic cardiomyopathy and residual myocardial viability. Circulation. 1997 Aug 5;96(3):793–800. doi: 10.1161/01.cir.96.3.793. [DOI] [PubMed] [Google Scholar]
  32. Panza J. A., Dilsizian V., Laurienzo J. M., Curiel R. V., Katsiyiannis P. T. Relation between thallium uptake and contractile response to dobutamine. Implications regarding myocardial viability in patients with chronic coronary artery disease and left ventricular dysfunction. Circulation. 1995 Feb 15;91(4):990–998. doi: 10.1161/01.cir.91.4.990. [DOI] [PubMed] [Google Scholar]
  33. Perrone-Filardi P., Pace L., Prastaro M., Squame F., Betocchi S., Soricelli A., Piscione F., Indolfi C., Crisci T., Salvatore M. Assessment of myocardial viability in patients with chronic coronary artery disease. Rest-4-hour-24-hour 201Tl tomography versus dobutamine echocardiography. Circulation. 1996 Dec 1;94(11):2712–2719. doi: 10.1161/01.cir.94.11.2712. [DOI] [PubMed] [Google Scholar]
  34. Rahimtoola S. H. Coronary bypass surgery for chronic angina--1981. A perspective. Circulation. 1982 Feb;65(2):225–241. doi: 10.1161/01.cir.65.2.225. [DOI] [PubMed] [Google Scholar]
  35. Roth A., Herling M., Vishlitzki V. The impact of 'Shahal' (a new cardiac emergency service) on subscribers' requests for medical assistance: characteristics and distribution of calls. Eur Heart J. 1995 Jan;16(1):129–133. doi: 10.1093/eurheartj/16.1.129. [DOI] [PubMed] [Google Scholar]
  36. Segar D. S., Brown S. E., Sawada S. G., Ryan T., Feigenbaum H. Dobutamine stress echocardiography: correlation with coronary lesion severity as determined by quantitative angiography. J Am Coll Cardiol. 1992 May;19(6):1197–1202. doi: 10.1016/0735-1097(92)90324-g. [DOI] [PubMed] [Google Scholar]
  37. Vanoverschelde J. L., Wijns W., Depré C., Essamri B., Heyndrickx G. R., Borgers M., Bol A., Melin J. A. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation. 1993 May;87(5):1513–1523. doi: 10.1161/01.cir.87.5.1513. [DOI] [PubMed] [Google Scholar]
  38. Zaret B. L., Wackers F. J. Nuclear cardiology (2). N Engl J Med. 1993 Sep 16;329(12):855–863. doi: 10.1056/NEJM199309163291208. [DOI] [PubMed] [Google Scholar]
  39. vom Dahl J., Eitzman D. T., al-Aouar Z. R., Kanter H. L., Hicks R. J., Deeb G. M., Kirsh M. M., Schwaiger M. Relation of regional function, perfusion, and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation. 1994 Nov;90(5):2356–2366. doi: 10.1161/01.cir.90.5.2356. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES