Skip to main content
Clinical Microbiology Reviews logoLink to Clinical Microbiology Reviews
. 1995 Oct;8(4):496–514. doi: 10.1128/cmr.8.4.496

Antimicrobial agent resistance in mycobacteria: molecular genetic insights.

J M Musser 1
PMCID: PMC172873  PMID: 8665467

Abstract

The primary theme emerging from molecular genetic work conducted with Mycobacterium tuberculosis and several other mycobacterial species is that resistance is commonly associated with simple nucleotide alterations in target chromosomal genes rather than with acquisition of new genetic elements encoding antibiotic-altering enzymes. Mutations in an 81-bp region of the gene (rpoB) encoding the beta subunit of RNA polymerase account for rifampin resistance in 96% of M. tuberculosis and many Mycobacterium leprae isolates. Streptomycin resistance in about one-half of M. tuberculosis isolates is associated with missense mutations in the rpsL gene coding for ribosomal protein S12 or nucleotide substitutions in the 16S rRNA gene (rrs). Mutations in the katG gene resulting in catalase-peroxidase amino acid alterations nad nucleotide substitutions in the presumed regulatory region of the inhA locus are repeatedly associated with isoniazid-resistant M. tuberculosis isolates. A majority of fluoroquinolone-resistant M. tuberculosis isolates have amino acid substitutions in a region of the DNA gyrase A subunit homologous to a conserved fluoroquinolone resistance-determining region. Multidrug-resistant isolates of M. tuberculosis arise as a consequence of sequential accumulation of mutations conferring resistance to single therapeutic agents. Molecular strategies show considerable promise for rapid detection of mutations associated with antimicrobial resistance. These approaches are now amenable to utilization in an appropriately equipped clinical microbiology laboratory.

Full Text

The Full Text of this article is available as a PDF (596.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen P. N., Noller H. F. Mutations in ribosomal proteins S4 and S12 influence the higher order structure of 16 S ribosomal RNA. J Mol Biol. 1989 Aug 5;208(3):457–468. doi: 10.1016/0022-2836(89)90509-3. [DOI] [PubMed] [Google Scholar]
  2. Altamirano M., Marostenmaki J., Wong A., FitzGerald M., Black W. A., Smith J. A. Mutations in the catalase-peroxidase gene from isoniazid-resistant Mycobacterium tuberculosis isolates. J Infect Dis. 1994 May;169(5):1162–1165. doi: 10.1093/infdis/169.5.1162. [DOI] [PubMed] [Google Scholar]
  3. Bains W., Smith G. C. A novel method for nucleic acid sequence determination. J Theor Biol. 1988 Dec 7;135(3):303–307. doi: 10.1016/s0022-5193(88)80246-7. [DOI] [PubMed] [Google Scholar]
  4. Banerjee A., Dubnau E., Quemard A., Balasubramanian V., Um K. S., Wilson T., Collins D., de Lisle G., Jacobs W. R., Jr inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science. 1994 Jan 14;263(5144):227–230. doi: 10.1126/science.8284673. [DOI] [PubMed] [Google Scholar]
  5. Barany F. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):189–193. doi: 10.1073/pnas.88.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beattie K. L., Fowler R. F. Solid-phase gene assembly. Nature. 1991 Aug 8;352(6335):548–549. doi: 10.1038/352548a0. [DOI] [PubMed] [Google Scholar]
  7. Beggs W. H., Andrews F. A. Nonspecific ionic inhibition of ethambutol binding by Mycobacterium smegmatis. Antimicrob Agents Chemother. 1973 Aug;4(2):115–119. doi: 10.1128/aac.4.2.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Benson C. A. Disease due to the Mycobacterium avium complex in patients with AIDS: epidemiology and clinical syndrome. Clin Infect Dis. 1994 Apr;18 (Suppl 3):S218–S222. doi: 10.1093/clinids/18.supplement_3.s218. [DOI] [PubMed] [Google Scholar]
  9. Bercovier H., Kafri O., Sela S. Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem Biophys Res Commun. 1986 May 14;136(3):1136–1141. doi: 10.1016/0006-291x(86)90452-3. [DOI] [PubMed] [Google Scholar]
  10. Bergler H., Högenauer G., Turnowsky F. Sequences of the envM gene and of two mutated alleles in Escherichia coli. J Gen Microbiol. 1992 Oct;138(10):2093–2100. doi: 10.1099/00221287-138-10-2093. [DOI] [PubMed] [Google Scholar]
  11. Bergler H., Wallner P., Ebeling A., Leitinger B., Fuchsbichler S., Aschauer H., Kollenz G., Högenauer G., Turnowsky F. Protein EnvM is the NADH-dependent enoyl-ACP reductase (FabI) of Escherichia coli. J Biol Chem. 1994 Feb 25;269(8):5493–5496. [PubMed] [Google Scholar]
  12. Bloch A. B., Cauthen G. M., Onorato I. M., Dansbury K. G., Kelly G. D., Driver C. R., Snider D. E., Jr Nationwide survey of drug-resistant tuberculosis in the United States. JAMA. 1994 Mar 2;271(9):665–671. [PubMed] [Google Scholar]
  13. Bloom B. R., Murray C. J. Tuberculosis: commentary on a reemergent killer. Science. 1992 Aug 21;257(5073):1055–1064. doi: 10.1126/science.257.5073.1055. [DOI] [PubMed] [Google Scholar]
  14. Bodmer T., Zürcher G., Imboden P., Telenti A. Mutation position and type of substitution in the beta-subunit of the RNA polymerase influence in-vitro activity of rifamycins in rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother. 1995 Feb;35(2):345–348. doi: 10.1093/jac/35.2.345. [DOI] [PubMed] [Google Scholar]
  15. Brown B. A., Wallace R. J., Jr, Onyi G. O. Activities of clarithromycin against eight slowly growing species of nontuberculous mycobacteria, determined by using a broth microdilution MIC system. Antimicrob Agents Chemother. 1992 Sep;36(9):1987–1990. doi: 10.1128/aac.36.9.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Brown B. A., Wallace R. J., Jr, Onyi G. O., De Rosas V., Wallace R. J., 3rd Activities of four macrolides, including clarithromycin, against Mycobacterium fortuitum, Mycobacterium chelonae, and M. chelonae-like organisms. Antimicrob Agents Chemother. 1992 Jan;36(1):180–184. doi: 10.1128/aac.36.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Butler W. R., Kilburn J. O. Susceptibility of Mycobacterium tuberculosis to pyrazinamide and its relationship to pyrazinamidase activity. Antimicrob Agents Chemother. 1983 Oct;24(4):600–601. doi: 10.1128/aac.24.4.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. COHN M. L., KOVITZ C., ODA U., MIDDLEBROOK G. Studies on isoniazid and tubercle bacilli. II. The growth requirements, catalase activities, and pathogenic properties of isoniazid-resistant mutants. Am Rev Tuberc. 1954 Oct;70(4):641–664. doi: 10.1164/art.1954.70.4.641. [DOI] [PubMed] [Google Scholar]
  19. Cambau E., Sougakoff W., Besson M., Truffot-Pernot C., Grosset J., Jarlier V. Selection of a gyrA mutant of Mycobacterium tuberculosis resistant to fluoroquinolones during treatment with ofloxacin. J Infect Dis. 1994 Aug;170(2):479–483. doi: 10.1093/infdis/170.2.479. [DOI] [PubMed] [Google Scholar]
  20. Canetti G. Present aspects of bacterial resistance in tuberculosis. Am Rev Respir Dis. 1965 Nov;92(5):687–703. doi: 10.1164/arrd.1965.92.5.687. [DOI] [PubMed] [Google Scholar]
  21. Cockerill F. R., 3rd, Uhl J. R., Temesgen Z., Zhang Y., Stockman L., Roberts G. D., Williams D. L., Kline B. C. Rapid identification of a point mutation of the Mycobacterium tuberculosis catalase-peroxidase (katG) gene associated with isoniazid resistance. J Infect Dis. 1995 Jan;171(1):240–245. doi: 10.1093/infdis/171.1.240. [DOI] [PubMed] [Google Scholar]
  22. Dautzenberg B., Truffot C., Legris S., Meyohas M. C., Berlie H. C., Mercat A., Chevret S., Grosset J. Activity of clarithromycin against Mycobacterium avium infection in patients with the acquired immune deficiency syndrome. A controlled clinical trial. Am Rev Respir Dis. 1991 Sep;144(3 Pt 1):564–569. doi: 10.1164/ajrccm/144.3_Pt_1.564. [DOI] [PubMed] [Google Scholar]
  23. David H. L., Newman C. M. Some observations on the genetics of isoniazid resistance in the tubercle bacilli. Am Rev Respir Dis. 1971 Oct;104(4):508–515. doi: 10.1164/arrd.1971.104.4.508. [DOI] [PubMed] [Google Scholar]
  24. De Stasio E. A., Moazed D., Noller H. F., Dahlberg A. E. Mutations in 16S ribosomal RNA disrupt antibiotic--RNA interactions. EMBO J. 1989 Apr;8(4):1213–1216. doi: 10.1002/j.1460-2075.1989.tb03494.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Della Bruna C., Schioppacassi G., Ungheri D., Jabès D., Morvillo E., Sanfilippo A. LM 427, a new spiropiperidylrifamycin: in vitro and in vivo studies. J Antibiot (Tokyo) 1983 Nov;36(11):1502–1506. doi: 10.7164/antibiotics.36.1502. [DOI] [PubMed] [Google Scholar]
  26. Dessen A., Quémard A., Blanchard J. S., Jacobs W. R., Jr, Sacchettini J. C. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science. 1995 Mar 17;267(5204):1638–1641. doi: 10.1126/science.7886450. [DOI] [PubMed] [Google Scholar]
  27. Dickinson J. M., Mitchison D. A. In vitro activity of new rifamycins against rifampicin-resistant M. tuberculosis and MAIS-complex mycobacteria. Tubercle. 1987 Sep;68(3):177–182. doi: 10.1016/0041-3879(87)90053-5. [DOI] [PubMed] [Google Scholar]
  28. Douglass J., Steyn L. M. A ribosomal gene mutation in streptomycin-resistant Mycobacterium tuberculosis isolates. J Infect Dis. 1993 Jun;167(6):1505–1506. doi: 10.1093/infdis/167.6.1505. [DOI] [PubMed] [Google Scholar]
  29. Drmanac R., Labat I., Brukner I., Crkvenjakov R. Sequencing of megabase plus DNA by hybridization: theory of the method. Genomics. 1989 Feb;4(2):114–128. doi: 10.1016/0888-7543(89)90290-5. [DOI] [PubMed] [Google Scholar]
  30. Ellard G. A. Combined treatment for lepromatous leprosy. Lepr Rev. 1980 Sep;51(3):199–205. doi: 10.5935/0305-7518.19800017. [DOI] [PubMed] [Google Scholar]
  31. Ellner J. J., Hinman A. R., Dooley S. W., Fischl M. A., Sepkowitz K. A., Goldberger M. J., Shinnick T. M., Iseman M. D., Jacobs W. R., Jr Tuberculosis symposium: emerging problems and promise. J Infect Dis. 1993 Sep;168(3):537–551. doi: 10.1093/infdis/168.3.537. [DOI] [PubMed] [Google Scholar]
  32. FORBES M., KUCK N. A., PEETS E. A. EFFECT OF ETHAMBUTOL ON NUCLEIC ACID METABOLISM IN MYCOBACTERIUM SMEGMATIS AND ITS REVERSAL BY POLYAMINES AND DIVALENT CATIONS. J Bacteriol. 1965 May;89:1299–1305. doi: 10.1128/jb.89.5.1299-1305.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. FORBES M., KUCK N. A., PEETS E. A. Mode of action of ethambutol. J Bacteriol. 1962 Nov;84:1099–1103. doi: 10.1128/jb.84.5.1099-1103.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Felmlee T. A., Liu Q., Whelen A. C., Williams D., Sommer S. S., Persing D. H. Genotypic detection of Mycobacterium tuberculosis rifampin resistance: comparison of single-strand conformation polymorphism and dideoxy fingerprinting. J Clin Microbiol. 1995 Jun;33(6):1617–1623. doi: 10.1128/jcm.33.6.1617-1623.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Finken M., Kirschner P., Meier A., Wrede A., Böttger E. C. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol. 1993 Sep;9(6):1239–1246. doi: 10.1111/j.1365-2958.1993.tb01253.x. [DOI] [PubMed] [Google Scholar]
  36. Finzel B. C., Poulos T. L., Kraut J. Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution. J Biol Chem. 1984 Nov 10;259(21):13027–13036. [PubMed] [Google Scholar]
  37. Fischl M. A., Daikos G. L., Uttamchandani R. B., Poblete R. B., Moreno J. N., Reyes R. R., Boota A. M., Thompson L. M., Cleary T. J., Oldham S. A. Clinical presentation and outcome of patients with HIV infection and tuberculosis caused by multiple-drug-resistant bacilli. Ann Intern Med. 1992 Aug 1;117(3):184–190. doi: 10.7326/0003-4819-117-3-184. [DOI] [PubMed] [Google Scholar]
  38. Frieden T. R., Sterling T., Pablos-Mendez A., Kilburn J. O., Cauthen G. M., Dooley S. W. The emergence of drug-resistant tuberculosis in New York City. N Engl J Med. 1993 Feb 25;328(8):521–526. doi: 10.1056/NEJM199302253280801. [DOI] [PubMed] [Google Scholar]
  39. Funatsu G., Wittmann H. G. Ribosomal proteins. 33. Location of amino-acid replacements in protein S12 isolated from Escherichia coli mutants resistant to streptomycin. J Mol Biol. 1972 Jul 28;68(3):547–550. doi: 10.1016/0022-2836(72)90108-8. [DOI] [PubMed] [Google Scholar]
  40. Gillespie S. H., Baskerville A. J., Davidson R. N., Felmingham D., Bryceson A. D. The serum rifabutin concentrations in a patient successfully treated for multi-resistant Mycobacterium tuberculosis infection. J Antimicrob Chemother. 1990 Mar;25(3):490–491. doi: 10.1093/jac/25.3.490. [DOI] [PubMed] [Google Scholar]
  41. Guerrero C., Stockman L., Marchesi F., Bodmer T., Roberts G. D., Telenti A. Evaluation of the rpoB gene in rifampicin-susceptible and -resistant Mycobacterium avium and Mycobacterium intracellulare. J Antimicrob Chemother. 1994 Mar;33(3):661–663. doi: 10.1093/jac/33.3.661-a. [DOI] [PubMed] [Google Scholar]
  42. HEDGECOCK L. W., FAUCHER I. O. Relation of pyrogallol-peroxidative activity to isoniazid resistance in Mycobacterium tuberculosis. Am Rev Tuberc. 1957 Apr;75(4):670–674. doi: 10.1164/artpd.1957.75.4.670. [DOI] [PubMed] [Google Scholar]
  43. HOK T. T. A COMPARATIVE STUDY OF THE SUSCEPTIBILITY TO ETHIONAMIDE, THIOSEMICARBAZONE, AND ISONIAZID OF TUBERCLE BACILLI FROM PATIENTS NEVER TREATED WITH ETHIONAMIDE OR THIOSEMICARBAZONE. Am Rev Respir Dis. 1964 Sep;90:468–469. doi: 10.1164/arrd.1964.90.3.468. [DOI] [PubMed] [Google Scholar]
  44. Heifets L. B., Flory M. A., Lindholm-Levy P. J. Does pyrazinoic acid as an active moiety of pyrazinamide have specific activity against Mycobacterium tuberculosis? Antimicrob Agents Chemother. 1989 Aug;33(8):1252–1254. doi: 10.1128/aac.33.8.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Heifets L. B., Lindholm-Levy P. J., Comstock R. D. Clarithromycin minimal inhibitory and bactericidal concentrations against Mycobacterium avium. Am Rev Respir Dis. 1992 Apr;145(4 Pt 1):856–858. doi: 10.1164/ajrccm/145.4_Pt_1.856. [DOI] [PubMed] [Google Scholar]
  46. Heifets L. B., Lindholm-Levy P. J. MICs and MBCs of Win 57273 against Mycobacterium avium and M. tuberculosis. Antimicrob Agents Chemother. 1990 May;34(5):770–774. doi: 10.1128/aac.34.5.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Herr E. B., Jr, Redstone M. O. Chemical and physical characterization of capreomycin. Ann N Y Acad Sci. 1966 Apr 20;135(2):940–946. doi: 10.1111/j.1749-6632.1966.tb45535.x. [DOI] [PubMed] [Google Scholar]
  48. Heym B., Alzari P. M., Honoré N., Cole S. T. Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol. 1995 Jan;15(2):235–245. doi: 10.1111/j.1365-2958.1995.tb02238.x. [DOI] [PubMed] [Google Scholar]
  49. Heym B., Honoré N., Truffot-Pernot C., Banerjee A., Schurra C., Jacobs W. R., Jr, van Embden J. D., Grosset J. H., Cole S. T. Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet. 1994 Jul 30;344(8918):293–298. doi: 10.1016/s0140-6736(94)91338-2. [DOI] [PubMed] [Google Scholar]
  50. Heym B., Zhang Y., Poulet S., Young D., Cole S. T. Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J Bacteriol. 1993 Jul;175(13):4255–4259. doi: 10.1128/jb.175.13.4255-4259.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Honore N., Cole S. T. Molecular basis of rifampin resistance in Mycobacterium leprae. Antimicrob Agents Chemother. 1993 Mar;37(3):414–418. doi: 10.1128/aac.37.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Honoré N., Bergh S., Chanteau S., Doucet-Populaire F., Eiglmeier K., Garnier T., Georges C., Launois P., Limpaiboon T., Newton S. Nucleotide sequence of the first cosmid from the Mycobacterium leprae genome project: structure and function of the Rif-Str regions. Mol Microbiol. 1993 Jan;7(2):207–214. doi: 10.1111/j.1365-2958.1993.tb01112.x. [DOI] [PubMed] [Google Scholar]
  53. Honoré N., Cole S. T. Streptomycin resistance in mycobacteria. Antimicrob Agents Chemother. 1994 Feb;38(2):238–242. doi: 10.1128/aac.38.2.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Horsburgh C. R., Jr Mycobacterium avium complex infection in the acquired immunodeficiency syndrome. N Engl J Med. 1991 May 9;324(19):1332–1338. doi: 10.1056/NEJM199105093241906. [DOI] [PubMed] [Google Scholar]
  55. Huebner R. E., Good R. C., Tokars J. I. Current practices in mycobacteriology: results of a survey of state public health laboratories. J Clin Microbiol. 1993 Apr;31(4):771–775. doi: 10.1128/jcm.31.4.771-775.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Hui J., Gordon N., Kajioka R. Permeability barrier to rifampin in mycobacteria. Antimicrob Agents Chemother. 1977 May;11(5):773–779. doi: 10.1128/aac.11.5.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Hunt J. M., Roberts G. D., Stockman L., Felmlee T. A., Persing D. H. Detection of a genetic locus encoding resistance to rifampin in mycobacterial cultures and in clinical specimens. Diagn Microbiol Infect Dis. 1994 Apr;18(4):219–227. doi: 10.1016/0732-8893(94)90024-8. [DOI] [PubMed] [Google Scholar]
  58. Inderlied C. B., Kemper C. A., Bermudez L. E. The Mycobacterium avium complex. Clin Microbiol Rev. 1993 Jul;6(3):266–310. doi: 10.1128/cmr.6.3.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Jin D. J., Gross C. A. Characterization of the pleiotropic phenotypes of rifampin-resistant rpoB mutants of Escherichia coli. J Bacteriol. 1989 Sep;171(9):5229–5231. doi: 10.1128/jb.171.9.5229-5231.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Jin D. J., Gross C. A. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol. 1988 Jul 5;202(1):45–58. doi: 10.1016/0022-2836(88)90517-7. [DOI] [PubMed] [Google Scholar]
  61. Kanther R. Myambutol: chemistry, pharmacology, and toxicology. Antibiot Chemother. 1970;16:203–214. doi: 10.1159/000386822. [DOI] [PubMed] [Google Scholar]
  62. Kapur V., Li L. L., Hamrick M. R., Plikaytis B. B., Shinnick T. M., Telenti A., Jacobs W. R., Jr, Banerjee A., Cole S., Yuen K. Y. Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med. 1995 Feb;119(2):131–138. [PubMed] [Google Scholar]
  63. Kapur V., Li L. L., Iordanescu S., Hamrick M. R., Wanger A., Kreiswirth B. N., Musser J. M. Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. J Clin Microbiol. 1994 Apr;32(4):1095–1098. doi: 10.1128/jcm.32.4.1095-1098.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Kapur V., Whittam T. S., Musser J. M. Is Mycobacterium tuberculosis 15,000 years old? J Infect Dis. 1994 Nov;170(5):1348–1349. doi: 10.1093/infdis/170.5.1348. [DOI] [PubMed] [Google Scholar]
  65. Kaye S., Loveday C., Tedder R. S. A microtitre format point mutation assay: application to the detection of drug resistance in human immunodeficiency virus type-1 infected patients treated with zidovudine. J Med Virol. 1992 Aug;37(4):241–246. doi: 10.1002/jmv.1890370402. [DOI] [PubMed] [Google Scholar]
  66. Kemper C. A., Meng T. C., Nussbaum J., Chiu J., Feigal D. F., Bartok A. E., Leedom J. M., Tilles J. G., Deresinski S. C., McCutchan J. A. Treatment of Mycobacterium avium complex bacteremia in AIDS with a four-drug oral regimen. Rifampin, ethambutol, clofazimine, and ciprofloxacin. The California Collaborative Treatment Group. Ann Intern Med. 1992 Mar 15;116(6):466–472. doi: 10.7326/0003-4819-116-6-466. [DOI] [PubMed] [Google Scholar]
  67. Kenney T. J., Churchward G. Cloning and sequence analysis of the rpsL and rpsG genes of Mycobacterium smegmatis and characterization of mutations causing resistance to streptomycin. J Bacteriol. 1994 Oct;176(19):6153–6156. doi: 10.1128/jb.176.19.6153-6156.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Khrapko K. R., Lysov YuP, Khorlyn A. A., Shick V. V., Florentiev V. L., Mirzabekov A. D. An oligonucleotide hybridization approach to DNA sequencing. FEBS Lett. 1989 Oct 9;256(1-2):118–122. doi: 10.1016/0014-5793(89)81730-2. [DOI] [PubMed] [Google Scholar]
  69. Kilburn J. O., Takayama K., Armstrong E. L., Greenberg J. Effects of ethambutol on phospholipid metabolism in Mycobacterium smegmatis. Antimicrob Agents Chemother. 1981 Feb;19(2):346–348. doi: 10.1128/aac.19.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Kochi A. The global tuberculosis situation and the new control strategy of the World Health Organization. Tubercle. 1991 Mar;72(1):1–6. doi: 10.1016/0041-3879(91)90017-m. [DOI] [PubMed] [Google Scholar]
  71. Konno K., Feldmann F. M., McDermott W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis. 1967 Mar;95(3):461–469. doi: 10.1164/arrd.1967.95.3.461. [DOI] [PubMed] [Google Scholar]
  72. Lacave C., Lanéelle M. A., Lanéelle G. Mycolic acid synthesis by Mycobacterium aurum cell-free extracts. Biochim Biophys Acta. 1990 Feb 23;1042(3):315–323. doi: 10.1016/0005-2760(90)90159-u. [DOI] [PubMed] [Google Scholar]
  73. Leclerc D., Melançon P., Brakier-Gingras L. Mutations in the 915 region of Escherichia coli 16S ribosomal RNA reduce the binding of streptomycin to the ribosome. Nucleic Acids Res. 1991 Jul 25;19(14):3973–3977. doi: 10.1093/nar/19.14.3973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Lefford M. J. The ethionamide sensitivity of British pre-treatment strains of Mycobacterium tuberculosis. Tubercle. 1966 Jun;47(2):198–206. doi: 10.1016/s0041-3879(66)80036-3. [DOI] [PubMed] [Google Scholar]
  75. Levin M. E., Hatfull G. F. Mycobacterium smegmatis RNA polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance. Mol Microbiol. 1993 Apr;8(2):277–285. doi: 10.1111/j.1365-2958.1993.tb01572.x. [DOI] [PubMed] [Google Scholar]
  76. Lisitsyn N. A., Sverdlov E. D., Moiseyeva E. P., Danilevskaya O. N., Nikiforov V. G. Mutation to rifampicin resistance at the beginning of the RNA polymerase beta subunit gene in Escherichia coli. Mol Gen Genet. 1984;196(1):173–174. doi: 10.1007/BF00334112. [DOI] [PubMed] [Google Scholar]
  77. Loewen P. C., Switala J., Smolenski M., Triggs-Raine B. L. Molecular characterization of three mutations in katG affecting the activity of hydroperoxidase I of Escherichia coli. Biochem Cell Biol. 1990 Jul-Aug;68(7-8):1037–1044. doi: 10.1139/o90-153. [DOI] [PubMed] [Google Scholar]
  78. MIDDLEBROOK G., COHN M. L., SCHAEFER W. B. Studies on isoniazid and tubercle bacilli. III. The isolation, drug-susceptibility, and catalase-testing of tubercle bacilli from isoniazid-treated patients. Am Rev Tuberc. 1954 Nov;70(5):852–872. doi: 10.1164/art.1954.70.5.852. [DOI] [PubMed] [Google Scholar]
  79. MIDDLEBROOK G., COHN M. L. Some observations on the pathogenicity of isoniazid-resistant variants of tubercle bacilli. Science. 1953 Sep 11;118(3063):297–299. doi: 10.1126/science.118.3063.297. [DOI] [PubMed] [Google Scholar]
  80. MIDDLEBROOK G. Isoniazid-resistance and catalase activity of tubercle bacilli; a preliminary report. Am Rev Tuberc. 1954 Mar;69(3):471–472. doi: 10.1164/art.1954.69.3.471. [DOI] [PubMed] [Google Scholar]
  81. MITCHISON D. A., WALLACE J. G., BHATIA A. L., SELKON J. B., SUBBAIAH T. V., LANCASTER M. C. A comparison of the virulence in guinea-pigs of South Indian and British tubercle bacilli. Tubercle. 1960 Feb;41:1–22. doi: 10.1016/s0041-3879(60)80019-0. [DOI] [PubMed] [Google Scholar]
  82. Mahmoudi A., Iseman M. D. Pitfalls in the care of patients with tuberculosis. Common errors and their association with the acquisition of drug resistance. JAMA. 1993 Jul 7;270(1):65–68. [PubMed] [Google Scholar]
  83. McClatchy J. K., Kanes W., Davidson P. T., Moulding T. S. Cross-resistance in M. tuberculosis to kanamycin, capreomycin and viomycin. Tubercle. 1977 Mar;58(1):29–34. doi: 10.1016/s0041-3879(77)80007-x. [DOI] [PubMed] [Google Scholar]
  84. McClatchy J. K., Tsang A. Y., Cernich M. S. Use of pyrazinamidase activity on Mycobacterium tuberculosis as a rapid method for determination of pyrazinamide susceptibility. Antimicrob Agents Chemother. 1981 Oct;20(4):556–557. doi: 10.1128/aac.20.4.556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. McClure W. R., Cech C. L. On the mechanism of rifampicin inhibition of RNA synthesis. J Biol Chem. 1978 Dec 25;253(24):8949–8956. [PubMed] [Google Scholar]
  86. Meier A., Kirschner P., Bange F. C., Vogel U., Böttger E. C. Genetic alterations in streptomycin-resistant Mycobacterium tuberculosis: mapping of mutations conferring resistance. Antimicrob Agents Chemother. 1994 Feb;38(2):228–233. doi: 10.1128/aac.38.2.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Meier A., Kirschner P., Springer B., Steingrube V. A., Brown B. A., Wallace R. J., Jr, Böttger E. C. Identification of mutations in 23S rRNA gene of clarithromycin-resistant Mycobacterium intracellulare. Antimicrob Agents Chemother. 1994 Feb;38(2):381–384. doi: 10.1128/aac.38.2.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Miller L. P., Crawford J. T., Shinnick T. M. The rpoB gene of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1994 Apr;38(4):805–811. doi: 10.1128/aac.38.4.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Moazed D., Noller H. F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature. 1987 Jun 4;327(6121):389–394. doi: 10.1038/327389a0. [DOI] [PubMed] [Google Scholar]
  90. Morris S. L., Nair J., Rouse D. A. The catalase-peroxidase of Mycobacterium intracellulare: nucleotide sequence analysis and expression in Escherichia coli. J Gen Microbiol. 1992 Nov;138(11):2363–2370. doi: 10.1099/00221287-138-11-2363. [DOI] [PubMed] [Google Scholar]
  91. Morris S., Bai G. H., Suffys P., Portillo-Gomez L., Fairchok M., Rouse D. Molecular mechanisms of multiple drug resistance in clinical isolates of Mycobacterium tuberculosis. J Infect Dis. 1995 Apr;171(4):954–960. doi: 10.1093/infdis/171.4.954. [DOI] [PubMed] [Google Scholar]
  92. Nair J., Rouse D. A., Bai G. H., Morris S. L. The rpsL gene and streptomycin resistance in single and multiple drug-resistant strains of Mycobacterium tuberculosis. Mol Microbiol. 1993 Nov;10(3):521–527. doi: 10.1111/j.1365-2958.1993.tb00924.x. [DOI] [PubMed] [Google Scholar]
  93. Newton C. R., Graham A., Heptinstall L. E., Powell S. J., Summers C., Kalsheker N., Smith J. C., Markham A. F. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989 Apr 11;17(7):2503–2516. doi: 10.1093/nar/17.7.2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Nightingale S. D., Cameron D. W., Gordin F. M., Sullam P. M., Cohn D. L., Chaisson R. E., Eron L. J., Sparti P. D., Bihari B., Kaufman D. L. Two controlled trials of rifabutin prophylaxis against Mycobacterium avium complex infection in AIDS. N Engl J Med. 1993 Sep 16;329(12):828–833. doi: 10.1056/NEJM199309163291202. [DOI] [PubMed] [Google Scholar]
  95. Noller H. F. Structure of ribosomal RNA. Annu Rev Biochem. 1984;53:119–162. doi: 10.1146/annurev.bi.53.070184.001003. [DOI] [PubMed] [Google Scholar]
  96. O'Brien R. J., Lyle M. A., Snider D. E., Jr Rifabutin (ansamycin LM 427): a new rifamycin-S derivative for the treatment of mycobacterial diseases. Rev Infect Dis. 1987 May-Jun;9(3):519–530. doi: 10.1093/clinids/9.3.519. [DOI] [PubMed] [Google Scholar]
  97. Ordway D. J., Sonnenberg M. G., Donahue S. A., Belisle J. T., Orme I. M. Drug-resistant strains of Mycobacterium tuberculosis exhibit a range of virulence for mice. Infect Immun. 1995 Feb;63(2):741–743. doi: 10.1128/iai.63.2.741-743.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2766–2770. doi: 10.1073/pnas.86.8.2766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Orita M., Suzuki Y., Sekiya T., Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics. 1989 Nov;5(4):874–879. doi: 10.1016/0888-7543(89)90129-8. [DOI] [PubMed] [Google Scholar]
  100. Ovchinnikov YuA, Monastyrskaya G. S., Gubanov V. V., Lipkin V. M., Sverdlov E. D., Kiver I. F., Bass I. A., Mindlin S. Z., Danilevskaya O. N., Khesin R. B. Primary structure of Escherichia coli RNA polymerase nucleotide substitution in the beta subunit gene of the rifampicin resistant rpoB255 mutant. Mol Gen Genet. 1981;184(3):536–538. doi: 10.1007/BF00352535. [DOI] [PubMed] [Google Scholar]
  101. Ovchinnikov Y. A., Monastyrskaya G. S., Guriev S. O., Kalinina N. F., Sverdlov E. D., Gragerov A. I., Bass I. A., Kiver I. F., Moiseyeva E. P., Igumnov V. N. RNA polymerase rifampicin resistance mutations in Escherichia coli: sequence changes and dominance. Mol Gen Genet. 1983;190(2):344–348. doi: 10.1007/BF00330662. [DOI] [PubMed] [Google Scholar]
  102. Pang Y., Brown B. A., Steingrube V. A., Wallace R. J., Jr, Roberts M. C. Tetracycline resistance determinants in Mycobacterium and Streptomyces species. Antimicrob Agents Chemother. 1994 Jun;38(6):1408–1412. doi: 10.1128/aac.38.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Paulin L. G., Brander E. E., Pösö H. J. Specific inhibition of spermidine synthesis in Mycobacteria spp. by the dextro isomer of ethambutol. Antimicrob Agents Chemother. 1985 Jul;28(1):157–159. doi: 10.1128/aac.28.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Pelletier H., Kraut J. Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science. 1992 Dec 11;258(5089):1748–1755. doi: 10.1126/science.1334573. [DOI] [PubMed] [Google Scholar]
  105. Pretet S., Lebeaut A., Parrot R., Truffot C., Grosset J., Dinh-Xuan A. T. Combined chemotherapy including rifabutin for rifampicin and isoniazid resistant pulmonary tuberculosis. G.E.T.I.M. (Group for the Study and Treatment of Resistant Mycobacterial Infection). Eur Respir J. 1992 Jun;5(6):680–684. [PubMed] [Google Scholar]
  106. Prior T. W., Papp A. C., Snyder P. J., Burghes A. H., Sedra M. S., Western L. M., Bartello C., Mendell J. R. Identification of two point mutations and a one base deletion in exon 19 of the dystrophin gene by heteroduplex formation. Hum Mol Genet. 1993 Mar;2(3):311–313. doi: 10.1093/hmg/2.3.311. [DOI] [PubMed] [Google Scholar]
  107. Pöso H., Paulin L., Brander E. Specific inhibition of spermidine synthase from mycobacteria by ethambutol. Lancet. 1983 Dec 17;2(8364):1418–1418. doi: 10.1016/s0140-6736(83)90943-1. [DOI] [PubMed] [Google Scholar]
  108. Quémard A., Lacave C., Lanéelle G. Isoniazid inhibition of mycolic acid synthesis by cell extracts of sensitive and resistant strains of Mycobacterium aurum. Antimicrob Agents Chemother. 1991 Jun;35(6):1035–1039. doi: 10.1128/aac.35.6.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. RIDDELL R. W., STEWART S. M., SOMNER A. R. Ethionamide. Br Med J. 1960 Oct 22;2(5207):1207–1208. doi: 10.1136/bmj.2.5207.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Revel V., Cambau E., Jarlier V., Sougakoff W. Characterization of mutations in Mycobacterium smegmatis involved in resistance to fluoroquinolones. Antimicrob Agents Chemother. 1994 Sep;38(9):1991–1996. doi: 10.1128/aac.38.9.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Rosner J. L., Storz G. Effects of peroxides on susceptibilities of Escherichia coli and Mycobacterium smegmatis to isoniazid. Antimicrob Agents Chemother. 1994 Aug;38(8):1829–1833. doi: 10.1128/aac.38.8.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Rosner J. L. Susceptibilities of oxyR regulon mutants of Escherichia coli and Salmonella typhimurium to isoniazid. Antimicrob Agents Chemother. 1993 Oct;37(10):2251–2253. doi: 10.1128/aac.37.10.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Ruf B., Schürmann D., Mauch H., Jautzke G., Fehrenbach F. J., Pohle H. D. Effectiveness of the macrolide clarithromycin in the treatment of Mycobacterium avium complex infection in HIV-infected patients. Infection. 1992 Sep-Oct;20(5):267–272. doi: 10.1007/BF01710792. [DOI] [PubMed] [Google Scholar]
  114. Salo W. L., Aufderheide A. C., Buikstra J., Holcomb T. A. Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2091–2094. doi: 10.1073/pnas.91.6.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Sanfilippo A., Della Bruna C., Marsili L., Morvillo E., Pasqualucci C. R., Schioppacassi G., Ungheri D. Biological activity of a new class of rifamycins. Spiro-piperidyl-rifamycins. J Antibiot (Tokyo) 1980 Oct;33(10):1193–1198. doi: 10.7164/antibiotics.33.1193. [DOI] [PubMed] [Google Scholar]
  116. Sepkowitz K. A., Telzak E. E., Recalde S., Armstrong D. Trends in the susceptibility of tuberculosis in New York City, 1987-1991. New York City Area Tuberculosis Working Group. Clin Infect Dis. 1994 May;18(5):755–759. doi: 10.1093/clinids/18.5.755. [DOI] [PubMed] [Google Scholar]
  117. Shafer R. W., Small P. M., Larkin C., Singh S. P., Kelly P., Sierra M. F., Schoolnik G., Chirgwin K. D. Temporal trends and transmission patterns during the emergence of multidrug-resistant tuberculosis in New York City: a molecular epidemiologic assessment. J Infect Dis. 1995 Jan;171(1):170–176. doi: 10.1093/infdis/171.1.170. [DOI] [PubMed] [Google Scholar]
  118. Shoeb H. A., Bowman B. U., Jr, Ottolenghi A. C., Merola A. J. Evidence for the generation of active oxygen by isoniazid treatment of extracts of Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother. 1985 Mar;27(3):404–407. doi: 10.1128/aac.27.3.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Shoeb H. A., Bowman B. U., Jr, Ottolenghi A. C., Merola A. J. Peroxidase-mediated oxidation of isoniazid. Antimicrob Agents Chemother. 1985 Mar;27(3):399–403. doi: 10.1128/aac.27.3.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Siddiqi S. H., Libonati J. P., Middlebrook G. Evaluation of rapid radiometric method for drug susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol. 1981 May;13(5):908–912. doi: 10.1128/jcm.13.5.908-912.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Silve G., Valero-Guillen P., Quemard A., Dupont M. A., Daffe M., Laneelle G. Ethambutol inhibition of glucose metabolism in mycobacteria: a possible target of the drug. Antimicrob Agents Chemother. 1993 Jul;37(7):1536–1538. doi: 10.1128/aac.37.7.1536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Sivaraja M., Goodin D. B., Smith M., Hoffman B. M. Identification by ENDOR of Trp191 as the free-radical site in cytochrome c peroxidase compound ES. Science. 1989 Aug 18;245(4919):738–740. doi: 10.1126/science.2549632. [DOI] [PubMed] [Google Scholar]
  123. Skinner R., Cundliffe E., Schmidt F. J. Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J Biol Chem. 1983 Oct 25;258(20):12702–12706. [PubMed] [Google Scholar]
  124. Snider D. E., Jr, Cauthen G. M., Farer L. S., Kelly G. D., Kilburn J. O., Good R. C., Dooley S. W. Drug-resistant tuberculosis. Am Rev Respir Dis. 1991 Sep;144(3 Pt 1):732–732. doi: 10.1164/ajrccm/144.3_Pt_1.732. [DOI] [PubMed] [Google Scholar]
  125. Stoeckle M. Y., Guan L., Riegler N., Weitzman I., Kreiswirth B., Kornblum J., Laraque F., Riley L. W. Catalase-peroxidase gene sequences in isoniazid-sensitive and -resistant strains of Mycobacterium tuberculosis from New York City. J Infect Dis. 1993 Oct;168(4):1063–1065. doi: 10.1093/infdis/168.4.1063. [DOI] [PubMed] [Google Scholar]
  126. Sullivan E. A., Kreiswirth B. N., Palumbo L., Kapur V., Musser J. M., Ebrahimzadeh A., Frieden T. R. Emergence of fluoroquinolone-resistant tuberculosis in New York City. Lancet. 1995 May 6;345(8958):1148–1150. doi: 10.1016/s0140-6736(95)90980-x. [DOI] [PubMed] [Google Scholar]
  127. Sutton W. B., Gordee R. S., Wick W. E., Stanfield L. In vitro and in vivo laboratory studies on the antituberculous activity of capreomycin. Ann N Y Acad Sci. 1966 Apr 20;135(2):947–959. doi: 10.1111/j.1749-6632.1966.tb45536.x. [DOI] [PubMed] [Google Scholar]
  128. Suzuki Y., Yoshinaga K., Ono Y., Nagata A., Yamada T. Organization of rRNA genes in Mycobacterium bovis BCG. J Bacteriol. 1987 Feb;169(2):839–843. doi: 10.1128/jb.169.2.839-843.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. THOMAS J. P., BAUGHN C. O., WILKINSON R. G., SHEPHERD R. G. A new synthetic compound with antituberculous activity in mice: ethambutol (dextro-2,2'-(ethylenediimino)-di-l-butanol). Am Rev Respir Dis. 1961 Jun;83:891–893. doi: 10.1164/arrd.1961.83.6.891. [DOI] [PubMed] [Google Scholar]
  130. Takayama K., Armstrong E. L., Kunugi K. A., Kilburn J. O. Inhibition by ethambutol of mycolic acid transfer into the cell wall of Mycobacterium smegmatis. Antimicrob Agents Chemother. 1979 Aug;16(2):240–242. doi: 10.1128/aac.16.2.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Takayama K., Kilburn J. O. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob Agents Chemother. 1989 Sep;33(9):1493–1499. doi: 10.1128/aac.33.9.1493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Takayama K., Wang L., David H. L. Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1972 Jul;2(1):29–35. doi: 10.1128/aac.2.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Takiff H. E., Salazar L., Guerrero C., Philipp W., Huang W. M., Kreiswirth B., Cole S. T., Jacobs W. R., Jr, Telenti A. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother. 1994 Apr;38(4):773–780. doi: 10.1128/aac.38.4.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston M. J., Matter L., Schopfer K., Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993 Mar 13;341(8846):647–650. doi: 10.1016/0140-6736(93)90417-f. [DOI] [PubMed] [Google Scholar]
  135. Telenti A., Imboden P., Marchesi F., Schmidheini T., Bodmer T. Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob Agents Chemother. 1993 Oct;37(10):2054–2058. doi: 10.1128/aac.37.10.2054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Tsukamura M., Nakamura E., Yoshii S., Amano H. Therapeutic effect of a new antibacterial substance ofloxacin (DL8280) on pulmonary tuberculosis. Am Rev Respir Dis. 1985 Mar;131(3):352–356. doi: 10.1164/arrd.1985.131.3.352. [DOI] [PubMed] [Google Scholar]
  137. Turnowsky F., Fuchs K., Jeschek C., Högenauer G. envM genes of Salmonella typhimurium and Escherichia coli. J Bacteriol. 1989 Dec;171(12):6555–6565. doi: 10.1128/jb.171.12.6555-6565.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Vareldzis B. P., Grosset J., de Kantor I., Crofton J., Laszlo A., Felten M., Raviglione M. C., Kochi A. Drug-resistant tuberculosis: laboratory issues. World Health Organization recommendations. Tuber Lung Dis. 1994 Feb;75(1):1–7. doi: 10.1016/0962-8479(94)90096-5. [DOI] [PubMed] [Google Scholar]
  139. Whelen A. C., Felmlee T. A., Hunt J. M., Williams D. L., Roberts G. D., Stockman L., Persing D. H. Direct genotypic detection of Mycobacterium tuberculosis rifampin resistance in clinical specimens by using single-tube heminested PCR. J Clin Microbiol. 1995 Mar;33(3):556–561. doi: 10.1128/jcm.33.3.556-561.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. White M. B., Carvalho M., Derse D., O'Brien S. J., Dean M. Detecting single base substitutions as heteroduplex polymorphisms. Genomics. 1992 Feb;12(2):301–306. doi: 10.1016/0888-7543(92)90377-5. [DOI] [PubMed] [Google Scholar]
  141. Williams D. L., Gillis T. P., Portaels F. Geographically distinct isolates of Mycobacterium leprae exhibit no genotypic diversity by restriction fragment-length polymorphism analysis. Mol Microbiol. 1990 Oct;4(10):1653–1659. doi: 10.1111/j.1365-2958.1990.tb00542.x. [DOI] [PubMed] [Google Scholar]
  142. Williams D. L., Waguespack C., Eisenach K., Crawford J. T., Portaels F., Salfinger M., Nolan C. M., Abe C., Sticht-Groh V., Gillis T. P. Characterization of rifampin-resistance in pathogenic mycobacteria. Antimicrob Agents Chemother. 1994 Oct;38(10):2380–2386. doi: 10.1128/aac.38.10.2380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Wilson T. M. Clinical experience with ethambutol. Antibiot Chemother. 1970;16:222–229. doi: 10.1159/000386824. [DOI] [PubMed] [Google Scholar]
  144. Wilson T. M., de Lisle G. W., Collins D. M. Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol Microbiol. 1995 Mar;15(6):1009–1015. doi: 10.1111/j.1365-2958.1995.tb02276.x. [DOI] [PubMed] [Google Scholar]
  145. Winder F. G., Collins P. B. Inhibition by isoniazid of synthesis of mycolic acids in Mycobacterium tuberculosis. J Gen Microbiol. 1970 Sep;63(1):41–48. doi: 10.1099/00221287-63-1-41. [DOI] [PubMed] [Google Scholar]
  146. Winder F. G., Collins P. B., Whelan D. Effects of ethionamide and isoxyl on mycolic acid synthesis in Mycobacterium tuberculosis BCG. J Gen Microbiol. 1971 Jun;66(3):379–380. doi: 10.1099/00221287-66-3-379. [DOI] [PubMed] [Google Scholar]
  147. Woods G. L., Witebsky F. G. Current status of mycobacterial testing in clinical laboratories. Results of a questionnaire completed by participants in the College of American Pathologists Mycobacteriology E survey. Arch Pathol Lab Med. 1993 Sep;117(9):876–884. [PubMed] [Google Scholar]
  148. Yamamoto T., Amitani R., Kuze F., Suzuki K. [In vitro activities of new rifamycin derivatives against Mycobacterium tuberculosis and M. avium complex]. Kekkaku. 1990 Dec;65(12):805–810. [PubMed] [Google Scholar]
  149. Yamane T., Hashizume T., Yamashita K., Konishi E., Hosoe K., Hidaka T., Watanabe K., Kawaharada H., Yamamoto T., Kuze F. Synthesis and biological activity of 3'-hydroxy-5'-aminobenzoxazinorifamycin derivatives. Chem Pharm Bull (Tokyo) 1993 Jan;41(1):148–155. doi: 10.1248/cpb.41.148. [DOI] [PubMed] [Google Scholar]
  150. Zhang Y., Garbe T., Young D. Transformation with katG restores isoniazid-sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations. Mol Microbiol. 1993 May;8(3):521–524. doi: 10.1111/j.1365-2958.1993.tb01596.x. [DOI] [PubMed] [Google Scholar]
  151. Zhang Y., Heym B., Allen B., Young D., Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992 Aug 13;358(6387):591–593. doi: 10.1038/358591a0. [DOI] [PubMed] [Google Scholar]
  152. Zhang Y., Young D. B. Molecular mechanisms of isoniazid: a drug at the front line of tuberculosis control. Trends Microbiol. 1993 Jun;1(3):109–113. doi: 10.1016/0966-842x(93)90117-a. [DOI] [PubMed] [Google Scholar]

Articles from Clinical Microbiology Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES