Skip to main content
Clinical Microbiology Reviews logoLink to Clinical Microbiology Reviews
. 1995 Oct;8(4):557–584. doi: 10.1128/cmr.8.4.557

beta-Lactamases in laboratory and clinical resistance.

D M Livermore 1
PMCID: PMC172876  PMID: 8665470

Abstract

beta-Lactamases are the commonest single cause of bacterial resistance to beta-lactam antibiotics. Numerous chromosomal and plasmid-mediated types are known and may be classified by their sequences or phenotypic properties. The ability of a beta-lactamase to cause resistance varies with its activity, quantity, and cellular location and, for gram-negative organisms, the permeability of the producer strain. beta-Lactamases sometimes cause obvious resistance to substrate drugs in routine tests; often, however, these enzymes reduce susceptibility without causing resistance at current, pharmacologically chosen breakpoints. This review considers the ability of the prevalent beta-lactamases to cause resistance to widely used beta-lactams, whether resistance is accurately reflected in routine tests, and the extent to which the antibiogram for an organism can be used to predict the type of beta-lactamase that it produces.

Full Text

The Full Text of this article is available as a PDF (617.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acar J. F., Goldstein F. W., Kitzis M. D. Susceptibility survey of piperacillin alone and in the presence of tazobactam. J Antimicrob Chemother. 1993 Jan;31 (Suppl A):23–28. doi: 10.1093/jac/31.suppl_a.23. [DOI] [PubMed] [Google Scholar]
  2. Akova M., Bonfiglio G., Livermore D. M. Susceptibility to beta-lactam antibiotics of mutant strains of Xanthomonas maltophilia with high- and low-level constitutive expression of L1 and L2 beta-lactamases. J Med Microbiol. 1991 Oct;35(4):208–213. doi: 10.1099/00222615-35-4-208. [DOI] [PubMed] [Google Scholar]
  3. Akova M., Yang Y., Livermore D. M. Interactions of tazobactam and clavulanate with inducibly- and constitutively-expressed Class I beta-lactamases. J Antimicrob Chemother. 1990 Feb;25(2):199–208. doi: 10.1093/jac/25.2.199. [DOI] [PubMed] [Google Scholar]
  4. Ambler R. P. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980 May 16;289(1036):321–331. doi: 10.1098/rstb.1980.0049. [DOI] [PubMed] [Google Scholar]
  5. Amicosante G., Franceschini N., Segatore B., Oratore A., Fattorini L., Orefici G., Van Beeumen J., Frere J. M. Characterization of a beta-lactamase produced in Mycobacterium fortuitum D316. Biochem J. 1990 Nov 1;271(3):729–734. doi: 10.1042/bj2710729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Amicosante G., Marinucci M. C., Franceschini N., Tizzani M. I., Oliva B., Oratore A. Fractionation and characterization of two beta-lactamases in Citrobacter diversus ULA-27 strain by chromatofocusing. J Chromatogr. 1987 Aug 21;403:366–372. doi: 10.1016/s0021-9673(00)96379-9. [DOI] [PubMed] [Google Scholar]
  7. Appelbaum P. C. Comparative susceptibility profile of piperacillin/tazobactam against anaerobic bacteria. J Antimicrob Chemother. 1993 Jan;31 (Suppl A):29–38. doi: 10.1093/jac/31.suppl_a.29. [DOI] [PubMed] [Google Scholar]
  8. Appelbaum P. C., Jacobs M. R., Spangler S. K., Yamabe S. Comparative activity of beta-lactamase inhibitors YTR 830, clavulanate, and sulbactam combined with beta-lactams against beta-lactamase-producing anaerobes. Antimicrob Agents Chemother. 1986 Nov;30(5):789–791. doi: 10.1128/aac.30.5.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Appelbaum P. C., Philippon A., Jacobs M. R., Spangler S. K., Gutmann L. Characterization of beta-lactamases from non-Bacteroides fragilis group Bacteroides spp. belonging to seven species and their role in beta-lactam resistance. Antimicrob Agents Chemother. 1990 Nov;34(11):2169–2176. doi: 10.1128/aac.34.11.2169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Appelbaum P. C., Spangler S. K., Pankuch G. A., Philippon A., Jacobs M. R., Shiman R., Goldstein E. J., Citron D. M. Characterization of a beta-lactamase from Clostridium clostridioforme. J Antimicrob Chemother. 1994 Jan;33(1):33–40. doi: 10.1093/jac/33.1.33. [DOI] [PubMed] [Google Scholar]
  11. Arakawa Y., Ohta M., Kido N., Mori M., Ito H., Komatsu T., Fujii Y., Kato N. Chromosomal beta-lactamase of Klebsiella oxytoca, a new class A enzyme that hydrolyzes broad-spectrum beta-lactam antibiotics. Antimicrob Agents Chemother. 1989 Jan;33(1):63–70. doi: 10.1128/aac.33.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Arlet G., Rouveau M., Casin I., Bouvet P. J., Lagrange P. H., Philippon A. Molecular epidemiology of Klebsiella pneumoniae strains that produce SHV-4 beta-lactamase and which were isolated in 14 French hospitals. J Clin Microbiol. 1994 Oct;32(10):2553–2558. doi: 10.1128/jcm.32.10.2553-2558.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bandoh K., Watanabe K., Muto Y., Tanaka Y., Kato N., Ueno K. Conjugal transfer of imipenem resistance in Bacteroides fragilis. J Antibiot (Tokyo) 1992 Apr;45(4):542–547. doi: 10.7164/antibiotics.45.542. [DOI] [PubMed] [Google Scholar]
  14. Barry A. L., Fuchs P. C., Pfaller M. A. Susceptibilities of beta-lactamase-producing and -nonproducing ampicillin-resistant strains of Haemophilus influenzae to ceftibuten, cefaclor, cefuroxime, cefixime, cefotaxime, and amoxicillin-clavulanic acid. Antimicrob Agents Chemother. 1993 Jan;37(1):14–18. doi: 10.1128/aac.37.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bauernfeind A., Chong Y., Schweighart S. Extended broad spectrum beta-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection. 1989 Sep-Oct;17(5):316–321. doi: 10.1007/BF01650718. [DOI] [PubMed] [Google Scholar]
  16. Bauernfeind A. Perspectives of beta-lactamases inhibitors in therapy of infections caused by Escherichia coli or Klebsiella with plasmidic resistance to third generation cephalosporins. Infection. 1990 Jan-Feb;18(1):48–52. doi: 10.1007/BF01644185. [DOI] [PubMed] [Google Scholar]
  17. Bennett P. M., Chopra I. Molecular basis of beta-lactamase induction in bacteria. Antimicrob Agents Chemother. 1993 Feb;37(2):153–158. doi: 10.1128/aac.37.2.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bergström S., Normark S. Beta-lactam resistance in clinical isolates of Escherichia coli caused by elevated production of the ampC-mediated chromosomal beta-lactamase. Antimicrob Agents Chemother. 1979 Oct;16(4):427–433. doi: 10.1128/aac.16.4.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Bernard H., Tancrede C., Livrelli V., Morand A., Barthelemy M., Labia R. A novel plasmid-mediated extended-spectrum beta-lactamase not derived from TEM- or SHV-type enzymes. J Antimicrob Chemother. 1992 May;29(5):590–592. doi: 10.1093/jac/29.5.590. [DOI] [PubMed] [Google Scholar]
  20. Bicknell R., Emanuel E. L., Gagnon J., Waley S. G. The production and molecular properties of the zinc beta-lactamase of Pseudomonas maltophilia IID 1275. Biochem J. 1985 Aug 1;229(3):791–797. doi: 10.1042/bj2290791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Blazquez J., Baquero M. R., Canton R., Alos I., Baquero F. Characterization of a new TEM-type beta-lactamase resistant to clavulanate, sulbactam, and tazobactam in a clinical isolate of Escherichia coli. Antimicrob Agents Chemother. 1993 Oct;37(10):2059–2063. doi: 10.1128/aac.37.10.2059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Bobrowski M. M., Matthew M., Barth P. T., Datta N., Grinter N. J., Jacob A. E., Kontomichalou P., Dale J. W., Smith J. T. Plasmid-determined beta-lactamase indistinguishable from the chromosomal beta-lactamase of Escherichia coli. J Bacteriol. 1976 Jan;125(1):149–157. doi: 10.1128/jb.125.1.149-157.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Bonfiglio G., Livermore D. M. Behaviour of beta-lactamase-positive and -negative Staphylococcus aureus isolates in susceptibility tests with piperacillin/tazobactam and other beta-lactam/beta-lactamase inhibitor combinations. J Antimicrob Chemother. 1993 Sep;32(3):431–444. doi: 10.1093/jac/32.3.431. [DOI] [PubMed] [Google Scholar]
  24. Bonfiglio G., Livermore D. M. Effect of media composition on the susceptibility of Xanthomonas maltophilia to beta-lactam antibiotics. J Antimicrob Chemother. 1991 Dec;28(6):837–842. doi: 10.1093/jac/28.6.837. [DOI] [PubMed] [Google Scholar]
  25. Bonfiglio G., Livermore D. M. Zinc ions and medium-dependent susceptibility to beta-lactams in Xanthomonas maltophilia. J Antimicrob Chemother. 1994 Jan;33(1):181–183. doi: 10.1093/jac/33.1.181-a. [DOI] [PubMed] [Google Scholar]
  26. Bonfiglio G., Livermore D. M. beta-Lactamase types amongst Staphylococcus aureus isolates in relation to susceptibility to beta-lactamase inhibitor combinations. J Antimicrob Chemother. 1994 Mar;33(3):465–481. doi: 10.1093/jac/33.3.465. [DOI] [PubMed] [Google Scholar]
  27. Botha P. Penicillin-resistant Neisseria meningitidis in southern Africa. Lancet. 1988 Jan 2;1(8575-6):54–54. doi: 10.1016/s0140-6736(88)91029-x. [DOI] [PubMed] [Google Scholar]
  28. Bradford P. A., Cherubin C. E., Idemyor V., Rasmussen B. A., Bush K. Multiply resistant Klebsiella pneumoniae strains from two Chicago hospitals: identification of the extended-spectrum TEM-12 and TEM-10 ceftazidime-hydrolyzing beta-lactamases in a single isolate. Antimicrob Agents Chemother. 1994 Apr;38(4):761–766. doi: 10.1128/aac.38.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Brun-Buisson C., Legrand P., Philippon A., Montravers F., Ansquer M., Duval J. Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniae. Lancet. 1987 Aug 8;2(8554):302–306. doi: 10.1016/s0140-6736(87)90891-9. [DOI] [PubMed] [Google Scholar]
  30. Burman L. G., Haeggman S., Kuistila M., Tullus K., Huovinen P. Epidemiology of plasmid-mediated beta-lactamases in enterobacteria Swedish neonatal wards and relation to antimicrobial therapy. Antimicrob Agents Chemother. 1992 May;36(5):989–992. doi: 10.1128/aac.36.5.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Burwen D. R., Banerjee S. N., Gaynes R. P. Ceftazidime resistance among selected nosocomial gram-negative bacilli in the United States. National Nosocomial Infections Surveillance System. J Infect Dis. 1994 Dec;170(6):1622–1625. doi: 10.1093/infdis/170.6.1622. [DOI] [PubMed] [Google Scholar]
  32. Bush K. Classification of beta-lactamases: groups 2c, 2d, 2e, 3, and 4. Antimicrob Agents Chemother. 1989 Mar;33(3):271–276. doi: 10.1128/aac.33.3.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Bush K., Jacoby G. A., Medeiros A. A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995 Jun;39(6):1211–1233. doi: 10.1128/aac.39.6.1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Bush K., Sykes R. B. beta-Lactamase inhibitors in perspective. J Antimicrob Chemother. 1983 Feb;11(2):97–107. doi: 10.1093/jac/11.2.97. [DOI] [PubMed] [Google Scholar]
  35. Casewell M. W., Desai N. Survival of multiply-resistant Klebsiella aerogenes and other gram-negative bacilli on finger-tips. J Hosp Infect. 1983 Dec;4(4):350–360. doi: 10.1016/0195-6701(83)90005-1. [DOI] [PubMed] [Google Scholar]
  36. Chen H. Y., Bonfiglio G., Allen M., Piper D., Edwardson T., McVey D., Livermore D. M. Multicentre survey of the comparative in-vitro activity of piperacillin/tazobactam against bacteria from hospitalized patients in the British Isles. J Antimicrob Chemother. 1993 Aug;32(2):247–266. doi: 10.1093/jac/32.2.247. [DOI] [PubMed] [Google Scholar]
  37. Chen H. Y., Livermore D. M. Activity of cefepime and other beta-lactam antibiotics against permeability mutants of Escherichia coli and Klebsiella pneumoniae. J Antimicrob Chemother. 1993 Nov;32 (Suppl B):63–74. doi: 10.1093/jac/32.suppl_b.63. [DOI] [PubMed] [Google Scholar]
  38. Chen H. Y., Yuan M., Ibrahim-Elmagboul I. B., Livermore D. M. National survey of susceptibility to antimicrobials amongst clinical isolates of Pseudomonas aeruginosa. J Antimicrob Chemother. 1995 Apr;35(4):521–534. doi: 10.1093/jac/35.4.521. [DOI] [PubMed] [Google Scholar]
  39. Chow J. W., Fine M. J., Shlaes D. M., Quinn J. P., Hooper D. C., Johnson M. P., Ramphal R., Wagener M. M., Miyashiro D. K., Yu V. L. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med. 1991 Oct 15;115(8):585–590. doi: 10.7326/0003-4819-115-8-585. [DOI] [PubMed] [Google Scholar]
  40. Christensen J. J., Keiding J., Bruun B. Antimicrobial susceptibility and beta-lactamase characterization of Branhamella catarrhalis isolates from 1983/1984 and 1988. APMIS. 1990 Nov;98(11):1039–1044. [PubMed] [Google Scholar]
  41. Christensen J. J., Keiding J., Schumacher H., Bruun B. Recognition of a new Branhamella catarrhalis beta-lactamase--BRO-3. J Antimicrob Chemother. 1991 Nov;28(5):774–775. doi: 10.1093/jac/28.5.774. [DOI] [PubMed] [Google Scholar]
  42. Cooksey R., Swenson J., Clark N., Gay E., Thornsberry C. Patterns and mechanisms of beta-lactam resistance among isolates of Escherichia coli from hospitals in the United States. Antimicrob Agents Chemother. 1990 May;34(5):739–745. doi: 10.1128/aac.34.5.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Cuchural G. J., Jr, Tally F. P., Jacobus N. V., Aldridge K., Cleary T., Finegold S. M., Hill G., Iannini P., O'Keefe J. P., Pierson C. Susceptibility of the Bacteroides fragilis group in the United States: analysis by site of isolation. Antimicrob Agents Chemother. 1988 May;32(5):717–722. doi: 10.1128/aac.32.5.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Cullmann W., Dick W. Evidence for nonspecific induction of beta-lactamase in overproducing variants of Enterobacter cloacae and Citrobacter freundii. Eur J Clin Microbiol. 1985 Feb;4(1):34–40. doi: 10.1007/BF02148657. [DOI] [PubMed] [Google Scholar]
  45. Curtis N. A., Eisenstadt R. L., Rudd C., White A. J. Inducible type I beta-lactamases of gram-negative bacteria and resistance to beta-lactam antibiotics. J Antimicrob Chemother. 1986 Jan;17(1):51–61. doi: 10.1093/jac/17.1.51. [DOI] [PubMed] [Google Scholar]
  46. Dalhoff A., Cullmann W. Specificity of beta-lactamase induction in Pseudomonas aeruginosa. J Antimicrob Chemother. 1984 Oct;14(4):349–357. doi: 10.1093/jac/14.4.349. [DOI] [PubMed] [Google Scholar]
  47. Danel F., Hall L. M., Gur D., Akalin H. E., Livermore D. M. Transferable production of PER-1 beta-lactamase in Pseudomonas aeruginosa. J Antimicrob Chemother. 1995 Feb;35(2):281–294. doi: 10.1093/jac/35.2.281. [DOI] [PubMed] [Google Scholar]
  48. Daum R. S., Murphey-Corb M., Shapira E., Dipp S. Epidemiology of rob beta-lactamase among ampicillin-resistant Haemophilus influenzae isolates in the United States. J Infect Dis. 1988 Mar;157(3):450–455. doi: 10.1093/infdis/157.3.450. [DOI] [PubMed] [Google Scholar]
  49. Doern G. V., Jorgensen J. H., Thornsberry C., Preston D. A. Prevalence of antimicrobial resistance among clinical isolates of Haemophilus influenzae: a collaborative study. Diagn Microbiol Infect Dis. 1986 Feb;4(2):95–107. doi: 10.1016/0732-8893(86)90143-4. [DOI] [PubMed] [Google Scholar]
  50. Doern G. V., Jorgensen J. H., Thornsberry C., Preston D. A., Tubert T., Redding J. S., Maher L. A. National collaborative study of the prevalence of antimicrobial resistance among clinical isolates of Haemophilus influenzae. Antimicrob Agents Chemother. 1988 Feb;32(2):180–185. doi: 10.1128/aac.32.2.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Doern G. V., Tubert T. Effect of inoculum size on results of macrotube broth dilution susceptibility tests with Branhamella catarrhalis. J Clin Microbiol. 1987 Aug;25(8):1576–1578. doi: 10.1128/jcm.25.8.1576-1578.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. East A. K., Dyke K. G. Cloning and sequence determination of six Staphylococcus aureus beta-lactamases and their expression in Escherichia coli and Staphylococcus aureus. J Gen Microbiol. 1989 Apr;135(4):1001–1015. doi: 10.1099/00221287-135-4-1001. [DOI] [PubMed] [Google Scholar]
  53. Edwards R., Greenwood D. An investigation of beta-lactamases from clinical isolates of Bacteroides species. J Med Microbiol. 1992 Feb;36(2):89–95. doi: 10.1099/00222615-36-2-89. [DOI] [PubMed] [Google Scholar]
  54. Ellner P. D., Fink D. J., Neu H. C., Parry M. F. Epidemiologic factors affecting antimicrobial resistance of common bacterial isolates. J Clin Microbiol. 1987 Sep;25(9):1668–1674. doi: 10.1128/jcm.25.9.1668-1674.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Felici A., Amicosante G., Oratore A., Strom R., Ledent P., Joris B., Fanuel L., Frère J. M. An overview of the kinetic parameters of class B beta-lactamases. Biochem J. 1993 Apr 1;291(Pt 1):151–155. doi: 10.1042/bj2910151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Fontanals D., Pineda V., Pons I., Rojo J. C. Penicillin-resistant beta-lactamase producing Neisseria meningitidis in Spain. Eur J Clin Microbiol Infect Dis. 1989 Jan;8(1):90–91. doi: 10.1007/BF01964130. [DOI] [PubMed] [Google Scholar]
  57. Fu K. P., Neu H. C. Piperacillin, a new penicillin active against many bacteria resistant to other penicillins. Antimicrob Agents Chemother. 1978 Mar;13(3):358–367. doi: 10.1128/aac.13.3.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Fujii T., Sato K., Yokota E., Maejima T., Inoue M., Mitsuhashi S. Properties of a broad spectrum beta-lactamase isolated from Flavobacterium meningosepticum GN14059. J Antibiot (Tokyo) 1988 Jan;41(1):81–85. doi: 10.7164/antibiotics.41.81. [DOI] [PubMed] [Google Scholar]
  59. Fung C. P., Yeo S. F., Livermore D. M. Susceptibility of Moraxella catarrhalis isolates to beta-lactam antibiotics in relation to beta-lactamase pattern. J Antimicrob Chemother. 1994 Feb;33(2):215–222. doi: 10.1093/jac/33.2.215. [DOI] [PubMed] [Google Scholar]
  60. Gatus B. J., Bell S. M., Jimenez A. S. Comparison of glycine enhancement with cefoxitin induction of class 1 beta-lactamase production in Enterobacter cloacae ATCC 13047. J Antimicrob Chemother. 1988 Feb;21(2):163–170. doi: 10.1093/jac/21.2.163. [DOI] [PubMed] [Google Scholar]
  61. Gatus B. J., Bell S. M., Jimenez A. S. Enhancement of beta-lactamase production by glycine in Enterobacter cloacae ATCC.13047. Pathology. 1986 Jan;18(1):145–147. doi: 10.3109/00313028609090843. [DOI] [PubMed] [Google Scholar]
  62. Gehrlein M., Leying H., Cullmann W., Wendt S., Opferkuch W. Imipenem resistance in Acinetobacter baumanii is due to altered penicillin-binding proteins. Chemotherapy. 1991;37(6):405–412. doi: 10.1159/000238887. [DOI] [PubMed] [Google Scholar]
  63. Ghuysen J. M. Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol. 1991;45:37–67. doi: 10.1146/annurev.mi.45.100191.000345. [DOI] [PubMed] [Google Scholar]
  64. Gianneli D., Tzelepi E., Tzouvelekis L. S., Mentis A. F., Nikolopoulou C. Dissemination of cephalosporin-resistant Serratia marcescens strains producing a plasmidic SHV type beta-lactamase in Greek hospitals. Eur J Clin Microbiol Infect Dis. 1994 Sep;13(9):764–767. doi: 10.1007/BF02276063. [DOI] [PubMed] [Google Scholar]
  65. Godfrey A. J., Wong S., Dance D. A., Chaowagul W., Bryan L. E. Pseudomonas pseudomallei resistance to beta-lactam antibiotics due to alterations in the chromosomally encoded beta-lactamase. Antimicrob Agents Chemother. 1991 Aug;35(8):1635–1640. doi: 10.1128/aac.35.8.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Gonzalez Leiza M., Perez-Diaz J. C., Ayala J., Casellas J. M., Martinez-Beltran J., Bush K., Baquero F. Gene sequence and biochemical characterization of FOX-1 from Klebsiella pneumoniae, a new AmpC-type plasmid-mediated beta-lactamase with two molecular variants. Antimicrob Agents Chemother. 1994 Sep;38(9):2150–2157. doi: 10.1128/aac.38.9.2150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Gradelski E., Huczko E., Kessler R. E., Bonner D. P., Fung-Tomc J. beta-Lactamase parameters of heterogeneously and homogeneously methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 1993 Mar;31(3):441–442. doi: 10.1093/jac/31.3.441. [DOI] [PubMed] [Google Scholar]
  68. Hall L. M., Livermore D. M., Gur D., Akova M., Akalin H. E. OXA-11, an extended-spectrum variant of OXA-10 (PSE-2) beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1993 Aug;37(8):1637–1644. doi: 10.1128/aac.37.8.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Hamilton-Miller J. M., Ramsay J. Synergism between beta-lactam antibiotics: a test of theoretical predictions made with Staphylococcus aureus. J Med Microbiol. 1973 Aug;6(3):377–391. doi: 10.1099/00222615-6-3-377. [DOI] [PubMed] [Google Scholar]
  70. Hamilton-Miller J. M. beta-Lactamases and their clinical significance. J Antimicrob Chemother. 1982 Feb;9 (Suppl B):11–19. doi: 10.1093/jac/9.suppl_b.11. [DOI] [PubMed] [Google Scholar]
  71. Hamilton-miller J. M. Use of Michaelis-Menten kinetics in the analysis of synergism between beta-lactam antibiotics. J Theor Biol. 1971 May;31(2):171–176. doi: 10.1016/0022-5193(71)90181-0. [DOI] [PubMed] [Google Scholar]
  72. Hancock R. E., Bellido F. Factors involved in the enhanced efficacy against gram-negative bacteria of fourth generation cephalosporins. J Antimicrob Chemother. 1992 Apr;29 (Suppl A):1–6. doi: 10.1093/jac/29.suppl_a.1. [DOI] [PubMed] [Google Scholar]
  73. Hartman B. J., Tomasz A. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol. 1984 May;158(2):513–516. doi: 10.1128/jb.158.2.513-516.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Hawkey P. M., Birkenhead D., Kerr K. G., Newton K. E., Hyde W. A. Effect of divalent cations in bacteriological media on the susceptibility of Xanthomonas maltophilia to imipenem, with special reference to zinc ions. J Antimicrob Chemother. 1993 Jan;31(1):47–55. doi: 10.1093/jac/31.1.47. [DOI] [PubMed] [Google Scholar]
  75. Hermida M., Roy C., Baró M. T., Reig R., Tirado M. Characterization of penicillinase-producing strains of Neisseria gonorrhoeae. Eur J Clin Microbiol Infect Dis. 1993 Jan;12(1):45–48. doi: 10.1007/BF01997057. [DOI] [PubMed] [Google Scholar]
  76. Hikida M., Yoshida M., Mitsuhashi S., Inoue M. Purification and properties of a cephalosporinase from Acinetobacter calcoaceticus. J Antibiot (Tokyo) 1989 Jan;42(1):123–126. doi: 10.7164/antibiotics.42.123. [DOI] [PubMed] [Google Scholar]
  77. Hirai K., Iyobe S., Inoue M., Mitsuhashi S. Purification and properties of a new beta-lactamase from Pseudomonas cepacia. Antimicrob Agents Chemother. 1980 Mar;17(3):355–358. doi: 10.1128/aac.17.3.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Horii T., Arakawa Y., Ohta M., Ichiyama S., Wacharotayankun R., Kato N. Plasmid-mediated AmpC-type beta-lactamase isolated from Klebsiella pneumoniae confers resistance to broad-spectrum beta-lactams, including moxalactam. Antimicrob Agents Chemother. 1993 May;37(5):984–990. doi: 10.1128/aac.37.5.984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Howard A. J., Hince C. J., Williams J. D. Antibiotic resistance in Streptococcus pneumoniae and Haemophilus influenzae. Report of a study group on bacterial resistance. Br Med J. 1978 Jun 24;1(6128):1657–1660. doi: 10.1136/bmj.1.6128.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Huovinen S., Huovinen P., Torniainen K., Jacoby G. A. Evaluation of plasmid-encoded beta-lactamase resistance in Escherichia coli blood culture isolates. Eur J Clin Microbiol Infect Dis. 1988 Oct;7(5):651–655. doi: 10.1007/BF01964244. [DOI] [PubMed] [Google Scholar]
  81. Hurlbut S., Cuchural G. J., Tally F. P. Imipenem resistance in Bacteroides distasonis mediated by a novel beta-lactamase. Antimicrob Agents Chemother. 1990 Jan;34(1):117–120. doi: 10.1128/aac.34.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Jack G. W., Richmond M. H. A comparative study of eight distinct beta-lactamases synthesized by gram-negative bacteria. J Gen Microbiol. 1970 Apr;61(1):43–61. doi: 10.1099/00221287-61-1-43. [DOI] [PubMed] [Google Scholar]
  83. Jacoby G. A., Carreras I. Activities of beta-lactam antibiotics against Escherichia coli strains producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1990 May;34(5):858–862. doi: 10.1128/aac.34.5.858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Jacoby G. A., Medeiros A. A. More extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1991 Sep;35(9):1697–1704. doi: 10.1128/aac.35.9.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Jacoby G. A., Sutton L. beta-Lactamases and beta-lactam resistance in Escherichia coli. Antimicrob Agents Chemother. 1985 Nov;28(5):703–705. doi: 10.1128/aac.28.5.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Jenks P. J., Hu Y. M., Danel F., Mehtar S., Livermore D. M. Plasmid-mediated production of class I (AmpC) beta-lactamase by two Klebsiella pneumoniae isolates from the UK. J Antimicrob Chemother. 1995 Jan;35(1):235–236. doi: 10.1093/jac/35.1.235. [DOI] [PubMed] [Google Scholar]
  87. Joly-Guillo M. L., Vallée E., Bergogne-Bérézin E., Philippon A. Distribution of beta-lactamases and phenotype analysis in clinical strains of Acinetobacter calcoaceticus. J Antimicrob Chemother. 1988 Nov;22(5):597–604. doi: 10.1093/jac/22.5.597. [DOI] [PubMed] [Google Scholar]
  88. Joly B., Delmas C., Rich C., Prere M. F., Livrelli V., Dabernat H. Un nouveau mécanisme de résistance à l'ampicilline par production de bêta-lactamase ROB-1 chez une souche d'Haemophilus influenzae isolée en France. Presse Med. 1987 May 16;16(18):916–917. [PubMed] [Google Scholar]
  89. Jones M. E., Avison M. B., Damdinsuren E., MacGowan A. P., Bennett P. M. Heterogeneity at the beta-lactamase structural gene ampC amongst Citrobacter spp. assessed by polymerase chain reaction analysis: potential for typing at a molecular level. J Med Microbiol. 1994 Sep;41(3):209–214. doi: 10.1099/00222615-41-3-209. [DOI] [PubMed] [Google Scholar]
  90. Jorgensen J. H., Doern G. V., Maher L. A., Howell A. W., Redding J. S. Antimicrobial resistance among respiratory isolates of Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae in the United States. Antimicrob Agents Chemother. 1990 Nov;34(11):2075–2080. doi: 10.1128/aac.34.11.2075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Katsanis G. P., Spargo J., Ferraro M. J., Sutton L., Jacoby G. A. Detection of Klebsiella pneumoniae and Escherichia coli strains producing extended-spectrum beta-lactamases. J Clin Microbiol. 1994 Mar;32(3):691–696. doi: 10.1128/jcm.32.3.691-696.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Kayser F. H., Morenzoni G., Santanam P. The Second European Collaborative Study on the frequency of antimicrobial resistance in Haemophilus influenzae. Eur J Clin Microbiol Infect Dis. 1990 Nov;9(11):810–817. doi: 10.1007/BF01967379. [DOI] [PubMed] [Google Scholar]
  93. Kemal C., Knowles J. R. Penicillanic acid sulfone: interaction with RTEM beta-lactamase from Escherichia coli at different pH values. Biochemistry. 1981 Jun 23;20(13):3688–3695. doi: 10.1021/bi00516a004. [DOI] [PubMed] [Google Scholar]
  94. Kernodle D. S., Classen D. C., Burke J. P., Kaiser A. B. Failure of cephalosporins to prevent Staphylococcus aureus surgical wound infections. JAMA. 1990 Feb 16;263(7):961–966. [PubMed] [Google Scholar]
  95. Kernodle D. S., McGraw P. A., Stratton C. W., Kaiser A. B. Use of extracts versus whole-cell bacterial suspensions in the identification of Staphylococcus aureus beta-lactamase variants. Antimicrob Agents Chemother. 1990 Mar;34(3):420–425. doi: 10.1128/aac.34.3.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Kesado T., Lindqvist L., Hedberg M., Tunér K., Nord C. E. Purification and characterization of a new beta-lactamase from Clostridium butyricum. Antimicrob Agents Chemother. 1989 Aug;33(8):1302–1307. doi: 10.1128/aac.33.8.1302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Kitzis M. D., Goldstein F. W., Labia R., Acar J. F. Activité du sulbactam et de l'acide clavulanique, seuls et associés, sur Acinetobacter calcoaceticus. Ann Microbiol (Paris) 1983 Mar-Apr;134A(2):163–168. [PubMed] [Google Scholar]
  98. Kliebe C., Nies B. A., Meyer J. F., Tolxdorff-Neutzling R. M., Wiedemann B. Evolution of plasmid-coded resistance to broad-spectrum cephalosporins. Antimicrob Agents Chemother. 1985 Aug;28(2):302–307. doi: 10.1128/aac.28.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Kuck N. A., Jacobus N. V., Petersen P. J., Weiss W. J., Testa R. T. Comparative in vitro and in vivo activities of piperacillin combined with the beta-lactamase inhibitors tazobactam, clavulanic acid, and sulbactam. Antimicrob Agents Chemother. 1989 Nov;33(11):1964–1969. doi: 10.1128/aac.33.11.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Labia R., Morand A., Tiwari K., Sirot D., Chanal C. Interactions of meropenem, with beta-lactamases, including enzymes with extended-spectrum activity against third-generation cephalosporins. J Antimicrob Chemother. 1989 Sep;24 (Suppl A):219–223. doi: 10.1093/jac/24.suppl_a.219. [DOI] [PubMed] [Google Scholar]
  101. Lacey R. W. Antibiotic resistance in Staphylococcus aureus and streptococci. Br Med Bull. 1984 Jan;40(1):77–83. doi: 10.1093/oxfordjournals.bmb.a071951. [DOI] [PubMed] [Google Scholar]
  102. Lacey R. W., Stokes A. Susceptibility of the "penicillinase-resistant" penicillins and cephalosporins to penicillinase of Staphylococcus aureus. J Clin Pathol. 1977 Jan;30(1):35–39. doi: 10.1136/jcp.30.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Laverdiere M., Welter D., Sabath L. D. Use of a heavy inoculum in the in vitro evaluation of the anti-staphylococcal activity of 19 cephalosporins. Antimicrob Agents Chemother. 1978 Apr;13(4):669–675. doi: 10.1128/aac.13.4.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Ledent P., Raquet X., Joris B., Van Beeumen J., Frère J. M. A comparative study of class-D beta-lactamases. Biochem J. 1993 Jun 1;292(Pt 2):555–562. doi: 10.1042/bj2920555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Lee E. H., Nicolas M. H., Kitzis M. D., Pialoux G., Collatz E., Gutmann L. Association of two resistance mechanisms in a clinical isolate of Enterobacter cloacae with high-level resistance to imipenem. Antimicrob Agents Chemother. 1991 Jun;35(6):1093–1098. doi: 10.1128/aac.35.6.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Leleu G., Kitzis M. D., Vallois J. M., Gutmann L., Decazes J. M. Different ratios of the piperacillin-tazobactam combination for treatment of experimental meningitis due to Klebsiella pneumoniae producing the TEM-3 extended-spectrum beta-lactamase. Antimicrob Agents Chemother. 1994 Feb;38(2):195–199. doi: 10.1128/aac.38.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Letendre E. D., Turgeon P. L. Production and induction of beta-lactamase during growth of Pseudomonas aeruginosa in biological fluids. Antimicrob Agents Chemother. 1989 May;33(5):776–777. doi: 10.1128/aac.33.5.776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Li X. Z., Ma D., Livermore D. M., Nikaido H. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to beta-lactam resistance. Antimicrob Agents Chemother. 1994 Aug;38(8):1742–1752. doi: 10.1128/aac.38.8.1742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Ling J. M., Lam A. W., Cheng A. F. Prevalence of ampicillin-resistant Haemophilus influenzae in community-acquired infections in Hong Kong. J Antimicrob Chemother. 1993 Aug;32(2):346–347. doi: 10.1093/jac/32.2.346. [DOI] [PubMed] [Google Scholar]
  110. Ling T. K., Lyon D. J., Cheng A. F., French G. L. In-vitro antimicrobial susceptibility and beta-lactamases of ampicillin-resistant Escherichia coli in Hong Kong. J Antimicrob Chemother. 1994 Jul;34(1):65–71. doi: 10.1093/jac/34.1.65. [DOI] [PubMed] [Google Scholar]
  111. Liu P. Y., Gur D., Hall L. M., Livermore D. M. Survey of the prevalence of beta-lactamases amongst 1000 gram-negative bacilli isolated consecutively at the Royal London Hospital. J Antimicrob Chemother. 1992 Oct;30(4):429–447. doi: 10.1093/jac/30.4.429. [DOI] [PubMed] [Google Scholar]
  112. Livermore D. M., Chau P. Y., Wong A. I., Leung Y. K. beta-Lactamase of Pseudomonas pseudomallei and its contribution to antibiotic resistance. J Antimicrob Chemother. 1987 Sep;20(3):313–321. doi: 10.1093/jac/20.3.313. [DOI] [PubMed] [Google Scholar]
  113. Livermore D. M. Clinical significance of beta-lactamase induction and stable derepression in gram-negative rods. Eur J Clin Microbiol. 1987 Aug;6(4):439–445. doi: 10.1007/BF02013107. [DOI] [PubMed] [Google Scholar]
  114. Livermore D. M., Corkill J. E. Effects of CO2 and pH on inhibition of TEM-1 and other beta-lactamases by penicillanic acid sulfones. Antimicrob Agents Chemother. 1992 Sep;36(9):1870–1876. doi: 10.1128/aac.36.9.1870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Livermore D. M., Davy K. W. Invalidity for Pseudomonas aeruginosa of an accepted model of bacterial permeability to beta-lactam antibiotics. Antimicrob Agents Chemother. 1991 May;35(5):916–921. doi: 10.1128/aac.35.5.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Livermore D. M. Determinants of the activity of beta-lactamase inhibitor combinations. J Antimicrob Chemother. 1993 Jan;31 (Suppl A):9–21. doi: 10.1093/jac/31.suppl_a.9. [DOI] [PubMed] [Google Scholar]
  117. Livermore D. M. Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1992 Sep;36(9):2046–2048. doi: 10.1128/aac.36.9.2046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Livermore D. M., Moosdeen F., Lindridge M. A., Kho P., Williams J. D. Behaviour of TEM-1 beta-lactamase as a resistance mechanism to ampicillin, mezlocillin and azlocillin in Escherichia coli. J Antimicrob Chemother. 1986 Feb;17(2):139–146. doi: 10.1093/jac/17.2.139. [DOI] [PubMed] [Google Scholar]
  119. Livermore D. M., Pitt T. L., Jones C. S., Crees-Morris J. A., Williams R. J. PSE-4 beta lactamase: a serotype-specific enzyme in Pseudomonas aeruginosa. J Med Microbiol. 1985 Feb;19(1):45–53. doi: 10.1099/00222615-19-1-45. [DOI] [PubMed] [Google Scholar]
  120. Livermore D. M. Radiolabelling of penicillin-binding proteins (PBPs) in intact Pseudomonas aeruginosa cells: consequences of beta-lactamase activity by PBP-5. J Antimicrob Chemother. 1987 Jun;19(6):733–742. doi: 10.1093/jac/19.6.733. [DOI] [PubMed] [Google Scholar]
  121. Livermore D. M., Seetulsingh P. Susceptibility of Escherichia coli isolates with TEM-1 beta-lactamase to combinations of BRL42715, tazobactam or clavulanate with piperacillin or amoxycillin . J Antimicrob Chemother. 1991 Jun;27(6):761–767. doi: 10.1093/jac/27.6.761. [DOI] [PubMed] [Google Scholar]
  122. Livermore D. M., Yang Y. J. Beta-lactamase lability and inducer power of newer beta-lactam antibiotics in relation to their activity against beta-lactamase-inducibility mutants of Pseudomonas aeruginosa. J Infect Dis. 1987 Apr;155(4):775–782. doi: 10.1093/infdis/155.4.775. [DOI] [PubMed] [Google Scholar]
  123. Livermore D. M., Yang Y. J. Comparative activity of meropenem against Pseudomonas aeruginosa strains with well-characterized resistance mechanisms. J Antimicrob Chemother. 1989 Sep;24 (Suppl A):149–159. doi: 10.1093/jac/24.suppl_a.149. [DOI] [PubMed] [Google Scholar]
  124. Livermore D. M. beta-Lactamases of Pseudomonas aeruginosa. Antibiot Chemother (1971) 1991;44:215–220. doi: 10.1159/000420317. [DOI] [PubMed] [Google Scholar]
  125. Lucas T. J. An evaluation of 12 methods for the demonstration of penicillinase. J Clin Pathol. 1979 Oct;32(10):1061–1065. doi: 10.1136/jcp.32.10.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Luman I., Wilson R. W., Wallace R. J., Jr, Nash D. R. Disk diffusion susceptibility of Branhamella catarrhalis and relationship of beta-lactam zone size to beta-lactamase production. Antimicrob Agents Chemother. 1986 Nov;30(5):774–776. doi: 10.1128/aac.30.5.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Machka K., Braveny I., Dabernat H., Dornbusch K., Van Dyck E., Kayser F. H., Van Klingeren B., Mittermayer H., Perea E., Powell M. Distribution and resistance patterns of Haemophilus influenzae: a European cooperative study. Eur J Clin Microbiol Infect Dis. 1988 Feb;7(1):14–24. doi: 10.1007/BF01962165. [DOI] [PubMed] [Google Scholar]
  128. Marrie T. J., Haldane E. V., Swantee C. A., Kerr E. A. Susceptibility of anaerobic bacteria to nine antimicrobial agents and demonstration of decreased susceptibility of Clostridium perfringens to penicillin. Antimicrob Agents Chemother. 1981 Jan;19(1):51–55. doi: 10.1128/aac.19.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Maskell J. P., Nasu M., Williams J. D. Cephalosporin-resistance in the Bacteroides fragilis group and the effect of clavulanic acid. J Antimicrob Chemother. 1984 Jan;13(1):23–30. doi: 10.1093/jac/13.1.23. [DOI] [PubMed] [Google Scholar]
  130. Masuda G., Tomioka S., Hasegawa M. Detection of beta-lactamase production by gram-negative bacteria. J Antibiot (Tokyo) 1976 Jun;29(6):662–664. doi: 10.7164/antibiotics.29.662. [DOI] [PubMed] [Google Scholar]
  131. Matagne A., Misselyn-Bauduin A. M., Joris B., Erpicum T., Granier B., Frère J. M. The diversity of the catalytic properties of class A beta-lactamases. Biochem J. 1990 Jan 1;265(1):131–146. doi: 10.1042/bj2650131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Matsumoto Y., Ikeda F., Kamimura T., Yokota Y., Mine Y. Novel plasmid-mediated beta-lactamase from Escherichia coli that inactivates oxyimino-cephalosporins. Antimicrob Agents Chemother. 1988 Aug;32(8):1243–1246. doi: 10.1128/aac.32.8.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Matthew M. Plasmid-mediated beta-lactamases of Gram-negative bacteria: properties and distribution. J Antimicrob Chemother. 1979 Jul;5(4):349–358. doi: 10.1093/jac/5.4.349. [DOI] [PubMed] [Google Scholar]
  134. McDougal L. K., Thornsberry C. The role of beta-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins. J Clin Microbiol. 1986 May;23(5):832–839. doi: 10.1128/jcm.23.5.832-839.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Medeiros A. A., O'brien T. F. Mechanisms of resistance to cephalosporins in ampicillin-resistant Escherichia coli. J Infect Dis. 1973 Oct;128(Suppl):S335–S334. doi: 10.1093/infdis/128.supplement_2.s335. [DOI] [PubMed] [Google Scholar]
  136. Mendelman P. M., Chaffin D. O., Clausen C., Stull T. L., Needham C., Williams J. D., Smith A. L. Failure to detect ampicillin-resistant, non-beta-lactamase-producing Haemophilus influenzae by standard disk susceptibility testing. Antimicrob Agents Chemother. 1986 Aug;30(2):274–280. doi: 10.1128/aac.30.2.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Mett H., Rosta S., Schacher B., Frei R. Outer membrane permeability and beta-lactamase content in Pseudomonas maltophilia clinical isolates and laboratory mutants. Rev Infect Dis. 1988 Jul-Aug;10(4):765–769. doi: 10.1093/clinids/10.4.765. [DOI] [PubMed] [Google Scholar]
  138. Meyer K. S., Urban C., Eagan J. A., Berger B. J., Rahal J. J. Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins. Ann Intern Med. 1993 Sep 1;119(5):353–358. doi: 10.7326/0003-4819-119-5-199309010-00001. [DOI] [PubMed] [Google Scholar]
  139. Moritz V. A., Carson P. B. Cefoxitin sensitivity as a marker for inducible beta-lactamases. J Med Microbiol. 1986 May;21(3):203–207. doi: 10.1099/00222615-21-3-203. [DOI] [PubMed] [Google Scholar]
  140. Murray B. E., Mederski-Samaroj B. Transferable beta-lactamase. A new mechanism for in vitro penicillin resistance in Streptococcus faecalis. J Clin Invest. 1983 Sep;72(3):1168–1171. doi: 10.1172/JCI111042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Murray B. E. The life and times of the Enterococcus. Clin Microbiol Rev. 1990 Jan;3(1):46–65. doi: 10.1128/cmr.3.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Naas T., Vandel L., Sougakoff W., Livermore D. M., Nordmann P. Cloning and sequence analysis of the gene for a carbapenem-hydrolyzing class A beta-lactamase, Sme-1, from Serratia marcescens S6. Antimicrob Agents Chemother. 1994 Jun;38(6):1262–1270. doi: 10.1128/aac.38.6.1262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Naumovski L., Quinn J. P., Miyashiro D., Patel M., Bush K., Singer S. B., Graves D., Palzkill T., Arvin A. M. Outbreak of ceftazidime resistance due to a novel extended-spectrum beta-lactamase in isolates from cancer patients. Antimicrob Agents Chemother. 1992 Sep;36(9):1991–1996. doi: 10.1128/aac.36.9.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Neu H. C. What do beta-lactamases mean for clinical efficacy? Infection. 1983;11 (Suppl 2):S74–S80. doi: 10.1007/BF01645290. [DOI] [PubMed] [Google Scholar]
  145. Nikaido H., Normark S. Sensitivity of Escherichia coli to various beta-lactams is determined by the interplay of outer membrane permeability and degradation by periplasmic beta-lactamases: a quantitative predictive treatment. Mol Microbiol. 1987 Jul;1(1):29–36. doi: 10.1111/j.1365-2958.1987.tb00523.x. [DOI] [PubMed] [Google Scholar]
  146. Nordmann P., Mariotte S., Naas T., Labia R., Nicolas M. H. Biochemical properties of a carbapenem-hydrolyzing beta-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob Agents Chemother. 1993 May;37(5):939–946. doi: 10.1128/aac.37.5.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Nordmann P., Ronco E., Naas T., Duport C., Michel-Briand Y., Labia R. Characterization of a novel extended-spectrum beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1993 May;37(5):962–969. doi: 10.1128/aac.37.5.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Normark S., Grundström T., Bergström S. Susceptibility to penicillins and cephalosporins in beta-lactamase producing strains of E. coli and relative amount of beta-lactamase produced from these strains. Scand J Infect Dis Suppl. 1980;Suppl 25:23–29. [PubMed] [Google Scholar]
  149. O'Brien T. F. Resistance of bacteria to antibacterial agents: report of Task Force 2. Rev Infect Dis. 1987 May-Jun;9 (Suppl 3):S244–S260. doi: 10.1093/clinids/9.supplement_3.s244. [DOI] [PubMed] [Google Scholar]
  150. O'Callaghan C. H. Description and classification of the newer cephalosporins and their relationships with the established compounds. J Antimicrob Chemother. 1979 Nov;5(6):635–671. doi: 10.1093/jac/5.6.635. [DOI] [PubMed] [Google Scholar]
  151. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Oliva B., Segatore B., Amicosante G., Franceschini N., Oratore A., Bennett P. M. Broad spectrum beta-lactamases of Citrobacter diversus. J Antimicrob Chemother. 1990 Mar;25(3):335–341. doi: 10.1093/jac/25.3.335. [DOI] [PubMed] [Google Scholar]
  153. Olsson-Liljequist B., Dornbusch K., Nord C. E. Characterization of three different beta-lactamases from the Bacteroides fragilis group. Antimicrob Agents Chemother. 1980 Aug;18(2):220–225. doi: 10.1128/aac.18.2.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Olsson O., Bergström S., Lindberg F. P., Normark S. ampC beta-lactamase hyperproduction in Escherichia coli: natural ampicillin resistance generated by horizontal chromosomal DNA transfer from Shigella. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7556–7560. doi: 10.1073/pnas.80.24.7556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Opferkuch W., Cullmann W. Beta-lactamases in ampicillin-resistant enterobacteriaceae. Infection. 1983;11 (Suppl 2):S83–S84. doi: 10.1007/BF01645292. [DOI] [PubMed] [Google Scholar]
  156. Osano E., Arakawa Y., Wacharotayankun R., Ohta M., Horii T., Ito H., Yoshimura F., Kato N. Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother. 1994 Jan;38(1):71–78. doi: 10.1128/aac.38.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Pangon B., Bizet C., Buré A., Pichon F., Philippon A., Regnier B., Gutmann L. In vivo selection of a cephamycin-resistant, porin-deficient mutant of Klebsiella pneumoniae producing a TEM-3 beta-lactamase. J Infect Dis. 1989 May;159(5):1005–1006. doi: 10.1093/infdis/159.5.1005. [DOI] [PubMed] [Google Scholar]
  158. Pankuch G. A., Jacobs M. R., Rittenhouse S. F., Appelbaum P. C. Susceptibilities of 123 strains of Xanthomonas maltophilia to eight beta-lactams (including beta-lactam-beta-lactamase inhibitor combinations) and ciprofloxacin tested by five methods. Antimicrob Agents Chemother. 1994 Oct;38(10):2317–2322. doi: 10.1128/aac.38.10.2317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Papanicolaou G. A., Medeiros A. A., Jacoby G. A. Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy beta-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother. 1990 Nov;34(11):2200–2209. doi: 10.1128/aac.34.11.2200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Parker A. C., Smith C. J. Genetic and biochemical analysis of a novel Ambler class A beta-lactamase responsible for cefoxitin resistance in Bacteroides species. Antimicrob Agents Chemother. 1993 May;37(5):1028–1036. doi: 10.1128/aac.37.5.1028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Payne D. J., Woodford N., Amyes S. G. Characterization of the plasmid mediated beta-lactamase BIL-1. J Antimicrob Chemother. 1992 Aug;30(2):119–127. doi: 10.1093/jac/30.2.119. [DOI] [PubMed] [Google Scholar]
  162. Percival A., Corkill J. E., Rowlands J., Sykes R. B. Pathogenicity of and beta-lactamase production by Branhamella (Neisseria) catarrhalis. Lancet. 1977 Dec 3;2(8049):1175–1175. doi: 10.1016/s0140-6736(77)91562-8. [DOI] [PubMed] [Google Scholar]
  163. Petit A., Ben Yaghlane-Bouslama H., Sofer L., Labia R. Does high level production of SHV-type penicillinase confer resistance to ceftazidime in Enterobacteriaceae? FEMS Microbiol Lett. 1992 Apr 1;71(1):89–94. doi: 10.1016/0378-1097(92)90547-2. [DOI] [PubMed] [Google Scholar]
  164. Petit A., Gerbaud G., Sirot D., Courvalin P., Sirot J. Molecular epidemiology of TEM-3 (CTX-1) beta-lactamase. Antimicrob Agents Chemother. 1990 Feb;34(2):219–224. doi: 10.1128/aac.34.2.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Philippon A., Labia R., Jacoby G. Extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1989 Aug;33(8):1131–1136. doi: 10.1128/aac.33.8.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Philpott-Howard J., Williams J. D. Increase in antibiotic resistance in Haemophilus influenzae in the United Kingdom since 1977: report of study group. Br Med J (Clin Res Ed) 1982 May 29;284(6329):1597–1599. doi: 10.1136/bmj.284.6329.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Pitt T. L., Livermore D. M., Miller G., Vatopoulos A., Legakis N. J. Resistance mechanisms of multiresistant serotype 012 Pseudomonas aeruginosa isolated in Europe. J Antimicrob Chemother. 1990 Sep;26(3):319–328. doi: 10.1093/jac/26.3.319. [DOI] [PubMed] [Google Scholar]
  168. Powell M., Koutsia-Carouzou C., Voutsinas D., Seymour A., Williams J. D. Resistance of clinical isolates of Haemophilus influenzae in United Kingdom 1986. Br Med J (Clin Res Ed) 1987 Jul 18;295(6591):176–179. doi: 10.1136/bmj.295.6591.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Powell M., Williams J. D. In-vitro activity of cefaclor, cephalexin and ampicillin against 2458 clinical isolates of Haemophilus influenzae. J Antimicrob Chemother. 1988 Jan;21(1):27–31. doi: 10.1093/jac/21.1.27. [DOI] [PubMed] [Google Scholar]
  170. Powell M., Yeo S. F., Seymour A., Yuan M., Williams J. D., Fah Y. S. Antimicrobial resistance in Haemophilus influenzae from England and Scotland in 1991. J Antimicrob Chemother. 1992 May;29(5):547–554. doi: 10.1093/jac/29.5.547. [DOI] [PubMed] [Google Scholar]
  171. Prince A., Wood M. S., Cacalano G. S., Chin N. X. Isolation and characterization of a penicillinase from Pseudomonas cepacia 249. Antimicrob Agents Chemother. 1988 Jun;32(6):838–843. doi: 10.1128/aac.32.6.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Quinn J. P., Miyashiro D., Sahm D., Flamm R., Bush K. Novel plasmid-mediated beta-lactamase (TEM-10) conferring selective resistance to ceftazidime and aztreonam in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother. 1989 Sep;33(9):1451–1456. doi: 10.1128/aac.33.9.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. RICHMOND M. H. WILD-TYPE VARIANTS OF EXOPENICILLINASE FROM STAPHYLOCOCCUS AUREUS. Biochem J. 1965 Mar;94:584–593. doi: 10.1042/bj0940584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Raimondi A., Moosdeen F., Williams J. D. Antibiotic resistance pattern of Flavobacterium meningosepticum. Eur J Clin Microbiol. 1986 Aug;5(4):461–463. doi: 10.1007/BF02075710. [DOI] [PubMed] [Google Scholar]
  175. Raimondi A., Traverso A., Nikaido H. Imipenem- and meropenem-resistant mutants of Enterobacter cloacae and Proteus rettgeri lack porins. Antimicrob Agents Chemother. 1991 Jun;35(6):1174–1180. doi: 10.1128/aac.35.6.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Rasmussen B. A., Bush K., Tally F. P. Antimicrobial resistance in Bacteroides. Clin Infect Dis. 1993 Jun;16 (Suppl 4):S390–S400. doi: 10.1093/clinids/16.supplement_4.s390. [DOI] [PubMed] [Google Scholar]
  177. Ravaoarinoro M., Toma E., Fallara A. Inducible beta-lactamases in clinical isolates of non-aeruginosa Pseudomonas. APMIS. 1992 Jun;100(6):523–530. doi: 10.1111/j.1699-0463.1992.tb00906.x. [DOI] [PubMed] [Google Scholar]
  178. Reid A. J., Amyes S. G. Plasmid penicillin resistance in Vibrio cholerae: identification of new beta-lactamase SAR-1. Antimicrob Agents Chemother. 1986 Aug;30(2):245–247. doi: 10.1128/aac.30.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Reid A. J., Simpson I. N., Harper P. B., Amyes S. G. Cephaloridine resistance in gram-negative bacteria isolated in Scotland. J Pharm Pharmacol. 1988 Aug;40(8):571–573. doi: 10.1111/j.2042-7158.1988.tb05306.x. [DOI] [PubMed] [Google Scholar]
  180. Reig R., Roy C., Hermida M., Teruel D., Coira A. A survey of beta-lactamases from 618 isolates of Klebsiella spp. J Antimicrob Chemother. 1993 Jan;31(1):29–35. doi: 10.1093/jac/31.1.29. [DOI] [PubMed] [Google Scholar]
  181. Rice L. B., Marshall S. H., Carias L. L., Sutton L., Jacoby G. A. Sequences of MGH-1, YOU-1, and YOU-2 extended-spectrum beta-lactamase genes. Antimicrob Agents Chemother. 1993 Dec;37(12):2760–2761. doi: 10.1128/aac.37.12.2760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Rice L. B., Willey S. H., Papanicolaou G. A., Medeiros A. A., Eliopoulos G. M., Moellering R. C., Jr, Jacoby G. A. Outbreak of ceftazidime resistance caused by extended-spectrum beta-lactamases at a Massachusetts chronic-care facility. Antimicrob Agents Chemother. 1990 Nov;34(11):2193–2199. doi: 10.1128/aac.34.11.2193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Rice L. B., Yao J. D., Klimm K., Eliopoulos G. M., Moellering R. C., Jr Efficacy of different beta-lactams against an extended-spectrum beta-lactamase-producing Klebsiella pneumoniae strain in the rat intra-abdominal abscess model. Antimicrob Agents Chemother. 1991 Jun;35(6):1243–1244. doi: 10.1128/aac.35.6.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Richmond M. H., Sykes R. B. The beta-lactamases of gram-negative bacteria and their possible physiological role. Adv Microb Physiol. 1973;9:31–88. doi: 10.1016/s0065-2911(08)60376-8. [DOI] [PubMed] [Google Scholar]
  185. Rogers M. B., Parker A. C., Smith C. J. Cloning and characterization of the endogenous cephalosporinase gene, cepA, from Bacteroides fragilis reveals a new subgroup of Ambler class A beta-lactamases. Antimicrob Agents Chemother. 1993 Nov;37(11):2391–2400. doi: 10.1128/aac.37.11.2391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Roy C., Teruel D., Reig R., Hermida M., Teixell M. beta-Lactamases and susceptibility phenotypes to beta-lactam antibiotics in Escherichia coli strains. J Antimicrob Chemother. 1992 May;29(5):593–594. doi: 10.1093/jac/29.5.593. [DOI] [PubMed] [Google Scholar]
  187. Rubin L. G., Medeiros A. A., Yolken R. H., Moxon E. R. Ampicillin treatment failure of apparently beta-lactamase-negative Haemophilus influenzae type b meningitis due to novel beta-lactamase. Lancet. 1981 Nov 7;2(8254):1008–1010. doi: 10.1016/s0140-6736(81)91214-9. [DOI] [PubMed] [Google Scholar]
  188. Rubio M. C., Gil J., Castillo J., Otal I., Gómez-Lus M. L., Rubio E., Sarraseca C., Torrellas A., Gómez-Lus R. The susceptibility to amoxycillin/clavulanate of Enterobacteriaceae with plasmid-mediated ampicillin resistance: a twelve-year study of strains in one Spanish hospital. J Antimicrob Chemother. 1989 Nov;24 (Suppl B):35–40. doi: 10.1093/jac/24.suppl_b.35. [DOI] [PubMed] [Google Scholar]
  189. Sabath L. D., Garner C., Wilcox C., Finland M. Effect of inoculum and of beta-lactamase on the anti-staphylococcal activity of thirteen penicillins and cephalosporins. Antimicrob Agents Chemother. 1975 Sep;8(3):344–349. doi: 10.1128/aac.8.3.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Sabath L. D. Reappraisal of the antistaphylococcal activities of first-generation (narrow-spectrum) and second-generation (expanded-spectrum) cephalosporins. Antimicrob Agents Chemother. 1989 Apr;33(4):407–411. doi: 10.1128/aac.33.4.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Sakurai Y., Tsukamoto K., Sawai T. Nucleotide sequence and characterization of a carbenicillin-hydrolyzing penicillinase gene from Proteus mirabilis. J Bacteriol. 1991 Nov;173(21):7038–7041. doi: 10.1128/jb.173.21.7038-7041.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Sanders C. C., Iaconis J. P., Bodey G. P., Samonis G. Resistance to ticarcillin-potassium clavulanate among clinical isolates of the family Enterobacteriaceae: role of PSE-1 beta-lactamase and high levels of TEM-1 and SHV-1 and problems with false susceptibility in disk diffusion tests. Antimicrob Agents Chemother. 1988 Sep;32(9):1365–1369. doi: 10.1128/aac.32.9.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Sanders C. C., Sanders W. E., Jr Clinical importance of inducible beta-lactamases in gram-negative bacteria. Eur J Clin Microbiol. 1987 Aug;6(4):435–438. doi: 10.1007/BF02013106. [DOI] [PubMed] [Google Scholar]
  194. Sanders C. C., Sanders W. E., Jr Emergence of resistance to cefamandole: possible role of cefoxitin-inducible beta-lactamases. Antimicrob Agents Chemother. 1979 Jun;15(6):792–797. doi: 10.1128/aac.15.6.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Sanders C. C., Sanders W. E., Jr beta-Lactam resistance in gram-negative bacteria: global trends and clinical impact. Clin Infect Dis. 1992 Nov;15(5):824–839. doi: 10.1093/clind/15.5.824. [DOI] [PubMed] [Google Scholar]
  196. Sato K., Fujii T., Okamoto R., Inoue M., Mitsuhashi S. Biochemical properties of beta-lactamase produced by Flavobacterium odoratum. Antimicrob Agents Chemother. 1985 Apr;27(4):612–614. doi: 10.1128/aac.27.4.612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Scriver S. R., Walmsley S. L., Kau C. L., Hoban D. J., Brunton J., McGeer A., Moore T. C., Witwicki E. Determination of antimicrobial susceptibilities of Canadian isolates of Haemophilus influenzae and characterization of their beta-lactamases. Canadian Haemophilus Study Group. Antimicrob Agents Chemother. 1994 Jul;38(7):1678–1680. doi: 10.1128/aac.38.7.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Seetulsingh P. S., Hall L. M., Livermore D. M. Activity of clavulanate combinations against TEM-1 beta-lactamase-producing Escherichia coli isolates obtained in 1982 and 1989. J Antimicrob Chemother. 1991 Jun;27(6):749–759. doi: 10.1093/jac/27.6.749. [DOI] [PubMed] [Google Scholar]
  199. Shannon K., King A., Phillips I. Development of resistance to beta-lactam antibiotics during therapy of Pseudomonas aeruginosa infections. Lancet. 1982 Jun 26;1(8287):1466–1466. doi: 10.1016/s0140-6736(82)92473-4. [DOI] [PubMed] [Google Scholar]
  200. Simpson I. N., Hunter R., Govan J. R., Nelson J. W. Do all Pseudomonas cepacia produce carbapenemases? J Antimicrob Chemother. 1993 Aug;32(2):339–341. doi: 10.1093/jac/32.2.339-a. [DOI] [PubMed] [Google Scholar]
  201. Sirot D., Sirot J., Labia R., Morand A., Courvalin P., Darfeuille-Michaud A., Perroux R., Cluzel R. Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel beta-lactamase. J Antimicrob Chemother. 1987 Sep;20(3):323–334. doi: 10.1093/jac/20.3.323. [DOI] [PubMed] [Google Scholar]
  202. Smith J. M. Terminology of Staphylococcus aureus strains showing decreased susceptibility to methicillin. J Antimicrob Chemother. 1992 Feb;29(2):219–221. doi: 10.1093/jac/29.2.219. [DOI] [PubMed] [Google Scholar]
  203. Sousa J. C., Carneiro G., Peixe M. L., Queirós M. L., Rebelo I. Characterization of beta-lactamases encoded by pathogenic strains of Escherichia coli from Portugal. J Antimicrob Chemother. 1991 Apr;27(4):437–440. doi: 10.1093/jac/27.4.437. [DOI] [PubMed] [Google Scholar]
  204. Steingrube V. A., Wallace R. J., Jr, Brown B. A., Zhang Y., Steele L. C., Young G., Nash D. R. Partial characterization of Nocardia farcinica beta-lactamases. Antimicrob Agents Chemother. 1993 Sep;37(9):1850–1855. doi: 10.1128/aac.37.9.1850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Sykes R. B., Bonner D. P., Bush K., Georgopapadakou N. H. Azthreonam (SQ 26,776), a synthetic monobactam specifically active against aerobic gram-negative bacteria. Antimicrob Agents Chemother. 1982 Jan;21(1):85–92. doi: 10.1128/aac.21.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Sykes R. B., Matthew M. The beta-lactamases of gram-negative bacteria and their role in resistance to beta-lactam antibiotics. J Antimicrob Chemother. 1976 Jun;2(2):115–157. doi: 10.1093/jac/2.2.115. [DOI] [PubMed] [Google Scholar]
  207. Thabaut A., Philippon A., Meyran M. beta-Lactamases of Pseudomonas aeruginosa and susceptibility against beta-lactam antibiotics. Chemioterapia. 1985 Feb;4(1):36–42. [PubMed] [Google Scholar]
  208. Then R. L., Glauser M. P., Angehrn P., Arisawa M. Cephalosporin resistance in strains of Klebsiella oxytoca isolated during antibiotic therapy. Zentralbl Bakteriol Mikrobiol Hyg A. 1983 Jul;254(4):469–479. [PubMed] [Google Scholar]
  209. Thomson C. J., Amyes S. G. TRC-1: emergence of a clavulanic acid-resistant TEM beta-lactamase in a clinical strain. FEMS Microbiol Lett. 1992 Mar 1;70(2):113–117. doi: 10.1016/0378-1097(92)90669-f. [DOI] [PubMed] [Google Scholar]
  210. Thore M. beta-Lactamase substrate profiles of coagulase-negative skin staphylococci from orthopaedic inpatients and staff members. J Hosp Infect. 1992 Nov;22(3):229–240. doi: 10.1016/0195-6701(92)90047-p. [DOI] [PubMed] [Google Scholar]
  211. Tirado M., Roy C., Segura C., Reig R., Hermida M., Foz A. Incidence of strains producing plasmid determined beta-lactamases among carbenicillin resistant Pseudomonas aeruginosa. J Antimicrob Chemother. 1986 Oct;18(4):453–458. doi: 10.1093/jac/18.4.453. [DOI] [PubMed] [Google Scholar]
  212. Townsend R., Winstanley T. G., Spencer R. C. In-vitro susceptibility of Xanthomonas maltophilia to aztreonam and clavulanic acid as a test for the presumptive identification of the species. J Hosp Infect. 1991 Aug;18(4):324–325. doi: 10.1016/0195-6701(91)90192-b. [DOI] [PubMed] [Google Scholar]
  213. Tremblay L. D., L'Ecuyer J., Provencher P., Bergeron M. G. Susceptibility of Haemophilus influenzae to antimicrobial agents used in Canada. Canadian Study Group. CMAJ. 1990 Nov 1;143(9):895–901. [PMC free article] [PubMed] [Google Scholar]
  214. Tzelepi E., Tzouvelekis L. S., Vatopoulos A. C., Mentis A. F., Tsakris A., Legakis N. J. High prevalence of stably derepressed class-I beta-lactamase expression in multiresistant clinical isolates of Enterobacter cloacae from Greek hospitals. J Med Microbiol. 1992 Aug;37(2):91–95. doi: 10.1099/00222615-37-2-91. [DOI] [PubMed] [Google Scholar]
  215. Tzouvelekis L. S., Tzelepi E., Mentis A. F., Tsakris A. Identification of a novel plasmid-mediated beta-lactamase with chromosomal cephalosporinase characteristics from Klebsiella pneumoniae. J Antimicrob Chemother. 1993 May;31(5):645–654. doi: 10.1093/jac/31.5.645. [DOI] [PubMed] [Google Scholar]
  216. Urban C., Go E., Mariano N., Berger B. J., Avraham I., Rubin D., Rahal J. J. Effect of sulbactam on infections caused by imipenem-resistant Acinetobacter calcoaceticus biotype anitratus. J Infect Dis. 1993 Feb;167(2):448–451. doi: 10.1093/infdis/167.2.448. [DOI] [PubMed] [Google Scholar]
  217. Urban C., Meyer K. S., Mariano N., Rahal J. J., Flamm R., Rasmussen B. A., Bush K. Identification of TEM-26 beta-lactamase responsible for a major outbreak of ceftazidime-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother. 1994 Feb;38(2):392–395. doi: 10.1128/aac.38.2.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Vatopoulos A. C., Philippon A., Tzouvelekis L. S., Komninou Z., Legakis N. J. Prevalence of a transferable SHV-5 type beta-lactamase in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Greece. J Antimicrob Chemother. 1990 Nov;26(5):635–648. doi: 10.1093/jac/26.5.635. [DOI] [PubMed] [Google Scholar]
  219. Vedel G., Belaaouaj A., Gilly L., Labia R., Philippon A., Névot P., Paul G. Clinical isolates of Escherichia coli producing TRI beta-lactamases: novel TEM-enzymes conferring resistance to beta-lactamase inhibitors. J Antimicrob Chemother. 1992 Oct;30(4):449–462. doi: 10.1093/jac/30.4.449. [DOI] [PubMed] [Google Scholar]
  220. Vu H., Nikaido H. Role of beta-lactam hydrolysis in the mechanism of resistance of a beta-lactamase-constitutive Enterobacter cloacae strain to expanded-spectrum beta-lactams. Antimicrob Agents Chemother. 1985 Mar;27(3):393–398. doi: 10.1128/aac.27.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Vázquez J. A., de la Fuente L., Berrón S., Reig R., Coira A., Roy C. Penicillinase-producing Neisseria gonorrhoeae strains showing two beta-lactamase bands. Eur J Clin Microbiol Infect Dis. 1994 Jan;13(1):40–41. doi: 10.1007/BF02026125. [DOI] [PubMed] [Google Scholar]
  222. Waley S. G. An explicit model for bacterial resistance: application to beta-lactam antibiotics. Microbiol Sci. 1987 May;4(5):143–146. [PubMed] [Google Scholar]
  223. Wallace R. J., Jr, Nash D. R., Johnson W. K., Steele L. C., Steingrube V. A. Beta-lactam resistance in Nocardia brasiliensis is mediated by beta-lactamase and reversed in the presence of clavulanic acid. J Infect Dis. 1987 Dec;156(6):959–966. doi: 10.1093/infdis/156.6.959. [DOI] [PubMed] [Google Scholar]
  224. Watanabe M., Iyobe S., Inoue M., Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1991 Jan;35(1):147–151. doi: 10.1128/aac.35.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Weber D. A., Sanders C. C., Bakken J. S., Quinn J. P. A novel chromosomal TEM derivative and alterations in outer membrane proteins together mediate selective ceftazidime resistance in Escherichia coli. J Infect Dis. 1990 Aug;162(2):460–465. doi: 10.1093/infdis/162.2.460. [DOI] [PubMed] [Google Scholar]
  226. Weinrich A. E., Del bene V. E. Beta-lactamase activity in anaerobic bacteria. Antimicrob Agents Chemother. 1976 Jul;10(1):106–111. doi: 10.1128/aac.10.1.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Williams J. D. Classification of cephalosporins. Drugs. 1987;34 (Suppl 2):15–22. doi: 10.2165/00003495-198700342-00004. [DOI] [PubMed] [Google Scholar]
  228. Williams J. D. Prospects for standardisation of methods and guidelines for disc susceptibility testing. Eur J Clin Microbiol Infect Dis. 1990 Jul;9(7):496–501. doi: 10.1007/BF01964290. [DOI] [PubMed] [Google Scholar]
  229. Williams J. D. The correlation of in-vitro susceptibility tests with in-vivo results of antibiotic treatment. Scand J Infect Dis Suppl. 1978;(13):64–66. [PubMed] [Google Scholar]
  230. Williams R. J., Lindridge M. A., Said A. A., Livermore D. M., Williams J. D. National survey of antibiotic resistance in Pseudomonas aeruginosa. J Antimicrob Chemother. 1984 Jul;14(1):9–16. doi: 10.1093/jac/14.1.9. [DOI] [PubMed] [Google Scholar]
  231. Williams R. J., Livermore D. M., Lindridge M. A., Said A. A., Williams J. D. Mechanisms of beta-lactam resistance in British isolates of Pseudomonas aeruginosa. J Med Microbiol. 1984 Jun;17(3):283–293. doi: 10.1099/00222615-17-3-283. [DOI] [PubMed] [Google Scholar]
  232. Williamson R. Resistance of Clostridium perfringens to beta-lactam antibiotics mediated by a decreased affinity of a single essential penicillin-binding protein. J Gen Microbiol. 1983 Aug;129(8):2339–2342. doi: 10.1099/00221287-129-8-2339. [DOI] [PubMed] [Google Scholar]
  233. Wu P. J., Shannon K., Phillips I. Effect of hyperproduction of TEM-1 beta-lactamase on in vitro susceptibility of Escherichia coli to beta-lactam antibiotics. Antimicrob Agents Chemother. 1994 Mar;38(3):494–498. doi: 10.1128/aac.38.3.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Wu P. J., Shannon K., Phillips I. beta-Lactamases and susceptibility to beta-lactam antibiotics in Escherichia coli. J Antimicrob Chemother. 1992 Dec;30(6):868–871. doi: 10.1093/jac/30.6.868. [DOI] [PubMed] [Google Scholar]
  235. Wu S. W., Dornbusch K., Göransson E., Ransjö U., Kronvall G. Characterization of Klebsiella oxytoca septicaemia isolates resistant to aztreonam and cefuroxime. J Antimicrob Chemother. 1991 Sep;28(3):389–397. doi: 10.1093/jac/28.3.389. [DOI] [PubMed] [Google Scholar]
  236. Wu S. W., Dornbusch K., Norgren M., Kronvall G. Extended spectrum beta-lactamase from Klebsiella oxytoca, not belonging to the TEM or SHV family. J Antimicrob Chemother. 1992 Jul;30(1):3–16. doi: 10.1093/jac/30.1.3. [DOI] [PubMed] [Google Scholar]
  237. Yang Y. J., Livermore D. M. Chromosomal beta-lactamase expression and resistance to beta-lactam antibiotics in Proteus vulgaris and Morganella morganii. Antimicrob Agents Chemother. 1988 Sep;32(9):1385–1391. doi: 10.1128/aac.32.9.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Yang Y. J., Livermore D. M. Interactions of meropenem with class I chromosomal beta-lactamases. J Antimicrob Chemother. 1989 Sep;24 (Suppl A):207–217. doi: 10.1093/jac/24.suppl_a.207. [DOI] [PubMed] [Google Scholar]
  239. Yang Y. J., Livermore D. M., Williams R. J. Chromosomal beta-lactamase expression and antibiotic resistance in Enterobacter cloacae. J Med Microbiol. 1988 Mar;25(3):227–233. doi: 10.1099/00222615-25-3-227. [DOI] [PubMed] [Google Scholar]
  240. Yang Y. J., Wu P. J., Livermore D. M. Biochemical characterization of a beta-lactamase that hydrolyzes penems and carbapenems from two Serratia marcescens isolates. Antimicrob Agents Chemother. 1990 May;34(5):755–758. doi: 10.1128/aac.34.5.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Yang Y., Livermore D. M. Activity of temocillin and other penicillins against beta-lactamase-inducible and -stably derepressed enterobacteria. J Antimicrob Chemother. 1988 Sep;22(3):299–306. doi: 10.1093/jac/22.3.299. [DOI] [PubMed] [Google Scholar]
  242. Yeo S. F., Livermore D. M. Effect of inoculum size on the in-vitro susceptibility to beta-lactam antibiotics of Moraxella catarrhalis isolates of different beta-lactamase types. J Med Microbiol. 1994 Apr;40(4):252–255. doi: 10.1099/00222615-40-4-252. [DOI] [PubMed] [Google Scholar]
  243. Yotsuji A., Minami S., Inoue M., Mitsuhashi S. Properties of novel beta-lactamase produced by Bacteroides fragilis. Antimicrob Agents Chemother. 1983 Dec;24(6):925–929. doi: 10.1128/aac.24.6.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  244. Young H. K., Nandivada L. S., Amyes S. G. Antibiotic resistance in the tropics. 1. The genetics of bacterial ampicillin resistance in tropical areas. Trans R Soc Trop Med Hyg. 1989 Jan-Feb;83(1):38–41. doi: 10.1016/0035-9203(89)90699-8. [DOI] [PubMed] [Google Scholar]
  245. Zhang Y., Steingrube V. A., Wallace R. J., Jr beta-Lactamase inhibitors and the inducibility of the beta-lactamase of Mycobacterium tuberculosis. Am Rev Respir Dis. 1992 Mar;145(3):657–660. doi: 10.1164/ajrccm/145.3.657. [DOI] [PubMed] [Google Scholar]
  246. Zhou X. Y., Bordon F., Sirot D., Kitzis M. D., Gutmann L. Emergence of clinical isolates of Escherichia coli producing TEM-1 derivatives or an OXA-1 beta-lactamase conferring resistance to beta-lactamase inhibitors. Antimicrob Agents Chemother. 1994 May;38(5):1085–1089. doi: 10.1128/aac.38.5.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Zimmermann W., Rosselet A. Function of the outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibiotics. Antimicrob Agents Chemother. 1977 Sep;12(3):368–372. doi: 10.1128/aac.12.3.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Zygmunt D. J., Stratton C. W., Kernodle D. S. Characterization of four beta-lactamases produced by Staphylococcus aureus. Antimicrob Agents Chemother. 1992 Feb;36(2):440–445. doi: 10.1128/aac.36.2.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  249. de Champs C., Sirot D., Chanal C., Poupart M. C., Dumas M. P., Sirot J. Concomitant dissemination of three extended-spectrum beta-lactamases among different Enterobacteriaceae isolated in a French hospital. J Antimicrob Chemother. 1991 Apr;27(4):441–457. doi: 10.1093/jac/27.4.441. [DOI] [PubMed] [Google Scholar]

Articles from Clinical Microbiology Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES