Skip to main content
Heart logoLink to Heart
. 1998 Aug;80(2):156–162. doi: 10.1136/hrt.80.2.156

Five minute recordings of heart rate variability for population studies: repeatability and age-sex characteristics

R Sinnreich 1, J Kark 1, Y Friedlander 1, D Sapoznikov 1, M Luria 1
PMCID: PMC1728778  PMID: 9813562

Abstract

Objective—To evaluate the stability of short recordings of heart rate variability (HRV) with time, and the association of HRV with age and sex.
Design—Five minute Holter recordings were made twice over a two month interval (tracking study). In addition, HRV was measured in a cross sectional study.
Setting—Residents of 11 Israeli kibbutzim were examined in their settlements.
Subjects—32 men and 38 women (aged 31-67) participated in the tracking study and 294 (aged 35-65) were involved in the cross sectional study.
Main outcome measures—Time and frequency domain analyses on Holter recordings were undertaken in two breathing conditions: spontaneous and controlled breathing (15 respirations per minute). Regression was used to assess the relations of sex, age, heart rate, and logarithmically transformed HRV indices.
Results—HRV measures were highly consistent with time with correlations of 0.76-0.80 for high frequency and total power. Geometric mean total power declined with age by 45% in men and 32% in women, and was lower by 24% among women than among men (all p ⩽ 0.005). Men had a 34% higher very low and low frequency power and a higher ratio of low to high frequency power (p < 0.001). Conversely, high frequency power in women represents a greater proportion of total power than in men.
Conclusion—Short recordings of HRV in a non-laboratory setting are stable over months and therefore characteristic of an individual. Strong age and sex effects were evident. HRV derived from short recordings can be informative in population based studies.

 Keywords: heart rate variability;  parasympathetic activity;  reliability;  sex differences

Full Text

The Full Text of this article is available as a PDF (110.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akselrod S., Gordon D., Ubel F. A., Shannon D. C., Berger A. C., Cohen R. J. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981 Jul 10;213(4504):220–222. doi: 10.1126/science.6166045. [DOI] [PubMed] [Google Scholar]
  2. Bigger J. T., Fleiss J. L., Rolnitzky L. M., Steinman R. C. The ability of several short-term measures of RR variability to predict mortality after myocardial infarction. Circulation. 1993 Sep;88(3):927–934. doi: 10.1161/01.cir.88.3.927. [DOI] [PubMed] [Google Scholar]
  3. Bigger J. T., Jr, Albrecht P., Steinman R. C., Rolnitzky L. M., Fleiss J. L., Cohen R. J. Comparison of time- and frequency domain-based measures of cardiac parasympathetic activity in Holter recordings after myocardial infarction. Am J Cardiol. 1989 Sep 1;64(8):536–538. doi: 10.1016/0002-9149(89)90436-0. [DOI] [PubMed] [Google Scholar]
  4. Bigger J. T., Jr, Fleiss J. L., Steinman R. C., Rolnitzky L. M., Kleiger R. E., Rottman J. N. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation. 1992 Jan;85(1):164–171. doi: 10.1161/01.cir.85.1.164. [DOI] [PubMed] [Google Scholar]
  5. Casolo G. C., Stroder P., Signorini C., Calzolari F., Zucchini M., Balli E., Sulla A., Lazzerini S. Heart rate variability during the acute phase of myocardial infarction. Circulation. 1992 Jun;85(6):2073–2079. doi: 10.1161/01.cir.85.6.2073. [DOI] [PubMed] [Google Scholar]
  6. Chambless L. E., McMahon R. P., Brown S. A., Patsch W., Heiss G., Shen Y. L. Short-term intraindividual variability in lipoprotein measurements: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Epidemiol. 1992 Nov 1;136(9):1069–1081. doi: 10.1093/oxfordjournals.aje.a116572. [DOI] [PubMed] [Google Scholar]
  7. Cowan M. J., Burr R. L., Narayanan S. B., Buzaitis A., Strasser M., Busch S. Comparison of autoregression and fast Fourier transform techniques for power spectral analysis of heart period variability of persons with sudden cardiac arrest before and after therapy to increase heart period variability. J Electrocardiol. 1992;25 (Suppl):234–239. doi: 10.1016/0022-0736(92)90109-d. [DOI] [PubMed] [Google Scholar]
  8. Eckberg D. L. Sympathovagal balance: a critical appraisal. Circulation. 1997 Nov 4;96(9):3224–3232. doi: 10.1161/01.cir.96.9.3224. [DOI] [PubMed] [Google Scholar]
  9. Ewing D. J., Borsey D. Q., Bellavere F., Clarke B. F. Cardiac autonomic neuropathy in diabetes: comparison of measures of R-R interval variation. Diabetologia. 1981 Jul;21(1):18–24. doi: 10.1007/BF03216217. [DOI] [PubMed] [Google Scholar]
  10. Ewing D. J. Heart rate variability: an important new risk factor in patients following myocardial infarction. Clin Cardiol. 1991 Aug;14(8):683–685. doi: 10.1002/clc.4960140811. [DOI] [PubMed] [Google Scholar]
  11. Hayano J., Sakakibara Y., Yamada A., Yamada M., Mukai S., Fujinami T., Yokoyama K., Watanabe Y., Takata K. Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am J Cardiol. 1991 Jan 15;67(2):199–204. doi: 10.1016/0002-9149(91)90445-q. [DOI] [PubMed] [Google Scholar]
  12. Hayano J., Yamada A., Mukai S., Sakakibara Y., Yamada M., Ohte N., Hashimoto T., Fujinami T., Takata K. Severity of coronary atherosclerosis correlates with the respiratory component of heart rate variability. Am Heart J. 1991 Apr;121(4 Pt 1):1070–1079. doi: 10.1016/0002-8703(91)90664-4. [DOI] [PubMed] [Google Scholar]
  13. Hohnloser S. H., Klingenheben T., Zabel M., Schröder F., Just H. Intraindividual reproducibility of heart rate variability. Pacing Clin Electrophysiol. 1992 Nov;15(11 Pt 2):2211–2214. doi: 10.1111/j.1540-8159.1992.tb03049.x. [DOI] [PubMed] [Google Scholar]
  14. Huikuri H. V., Pikkujämsä S. M., Airaksinen K. E., Ikäheimo M. J., Rantala A. O., Kauma H., Lilja M., Kesäniemi Y. A. Sex-related differences in autonomic modulation of heart rate in middle-aged subjects. Circulation. 1996 Jul 15;94(2):122–125. doi: 10.1161/01.cir.94.2.122. [DOI] [PubMed] [Google Scholar]
  15. Kleiger R. E., Bigger J. T., Bosner M. S., Chung M. K., Cook J. R., Rolnitzky L. M., Steinman R., Fleiss J. L. Stability over time of variables measuring heart rate variability in normal subjects. Am J Cardiol. 1991 Sep 1;68(6):626–630. doi: 10.1016/0002-9149(91)90355-o. [DOI] [PubMed] [Google Scholar]
  16. Kleiger R. E., Miller J. P., Bigger J. T., Jr, Moss A. J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987 Feb 1;59(4):256–262. doi: 10.1016/0002-9149(87)90795-8. [DOI] [PubMed] [Google Scholar]
  17. Kupari M., Virolainen J., Koskinen P., Tikkanen M. J. Short-term heart rate variability and factors modifying the risk of coronary artery disease in a population sample. Am J Cardiol. 1993 Oct 15;72(12):897–903. doi: 10.1016/0002-9149(93)91103-o. [DOI] [PubMed] [Google Scholar]
  18. Liao D., Barnes R. W., Chambless L. E., Simpson R. J., Jr, Sorlie P., Heiss G. Age, race, and sex differences in autonomic cardiac function measured by spectral analysis of heart rate variability--the ARIC study. Atherosclerosis Risk in Communities. Am J Cardiol. 1995 Nov 1;76(12):906–912. doi: 10.1016/s0002-9149(99)80260-4. [DOI] [PubMed] [Google Scholar]
  19. Liao D., Evans G. W., Chambless L. E., Barnes R. W., Sorlie P., Simpson R. J., Jr, Heiss G. Population-based study of heart rate variability and prevalent myocardial infarction. The Atherosclerosis Risk in Communities Study. J Electrocardiol. 1996 Jul;29(3):189–198. doi: 10.1016/s0022-0736(96)80082-3. [DOI] [PubMed] [Google Scholar]
  20. Lipsitz L. A., Mietus J., Moody G. B., Goldberger A. L. Spectral characteristics of heart rate variability before and during postural tilt. Relations to aging and risk of syncope. Circulation. 1990 Jun;81(6):1803–1810. doi: 10.1161/01.cir.81.6.1803. [DOI] [PubMed] [Google Scholar]
  21. Mølgaard H., Hermansen K., Bjerregaard P. Spectral components of short-term RR interval variability in healthy subjects and effects of risk factors. Eur Heart J. 1994 Sep;15(9):1174–1183. doi: 10.1093/oxfordjournals.eurheartj.a060650. [DOI] [PubMed] [Google Scholar]
  22. O'Brien I. A., O'Hare P., Corrall R. J. Heart rate variability in healthy subjects: effect of age and the derivation of normal ranges for tests of autonomic function. Br Heart J. 1986 Apr;55(4):348–354. doi: 10.1136/hrt.55.4.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pagani M., Lombardi F., Guzzetti S., Rimoldi O., Furlan R., Pizzinelli P., Sandrone G., Malfatto G., Dell'Orto S., Piccaluga E. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986 Aug;59(2):178–193. doi: 10.1161/01.res.59.2.178. [DOI] [PubMed] [Google Scholar]
  24. Pomeranz B., Macaulay R. J., Caudill M. A., Kutz I., Adam D., Gordon D., Kilborn K. M., Barger A. C., Shannon D. C., Cohen R. J. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985 Jan;248(1 Pt 2):H151–H153. doi: 10.1152/ajpheart.1985.248.1.H151. [DOI] [PubMed] [Google Scholar]
  25. Sapoznikov D., Luria M. H., Mahler Y., Gotsman M. S. Computer processing of artifact and arrhythmias in heart rate variability analysis. Comput Methods Programs Biomed. 1992 Sep-Oct;39(1-2):75–84. doi: 10.1016/0169-2607(92)90060-k. [DOI] [PubMed] [Google Scholar]
  26. Sapoznikov D., Luria M. H., Mahler Y., Gotsman M. S. Day vs night ECG and heart rate variability patterns in patients without obvious heart disease. J Electrocardiol. 1992 Jul;25(3):175–184. doi: 10.1016/0022-0736(92)90002-h. [DOI] [PubMed] [Google Scholar]
  27. Schwartz J. B., Gibb W. J., Tran T. Aging effects on heart rate variation. J Gerontol. 1991 May;46(3):M99–106. doi: 10.1093/geronj/46.3.m99. [DOI] [PubMed] [Google Scholar]
  28. Shannon D. C., Carley D. W., Benson H. Aging of modulation of heart rate. Am J Physiol. 1987 Oct;253(4 Pt 2):H874–H877. doi: 10.1152/ajpheart.1987.253.4.H874. [DOI] [PubMed] [Google Scholar]
  29. Tsuji H., Larson M. G., Venditti F. J., Jr, Manders E. S., Evans J. C., Feldman C. L., Levy D. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation. 1996 Dec 1;94(11):2850–2855. doi: 10.1161/01.cir.94.11.2850. [DOI] [PubMed] [Google Scholar]
  30. Tsuji H., Venditti F. J., Jr, Manders E. S., Evans J. C., Larson M. G., Feldman C. L., Levy D. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation. 1994 Aug;90(2):878–883. doi: 10.1161/01.cir.90.2.878. [DOI] [PubMed] [Google Scholar]
  31. Van Hoogenhuyze D., Weinstein N., Martin G. J., Weiss J. S., Schaad J. W., Sahyouni X. N., Fintel D., Remme W. J., Singer D. H. Reproducibility and relation to mean heart rate of heart rate variability in normal subjects and in patients with congestive heart failure secondary to coronary artery disease. Am J Cardiol. 1991 Dec 15;68(17):1668–1676. doi: 10.1016/0002-9149(91)90327-h. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES