Skip to main content
Clinical Microbiology Reviews logoLink to Clinical Microbiology Reviews
. 1996 Jan;9(1):34–46. doi: 10.1128/cmr.9.1.34

Activation of the complement system by pathogenic fungi.

T R Kozel 1
PMCID: PMC172880  PMID: 8665475

Abstract

Fungi have been studied as prototype activators of the complement cascade since the early 1900s. More recently, attention has focused on the role of the complement system in the pathogenesis of fungal infections. The interactions of Cryptococcus neoformans and Candida albicans with the complement system are the most widely characterized; however, all pathogenic fungi examined to date have the ability to initiate the complement cascade. The molecular mechanisms for initiation and regulation of the complement cascade differ from one fungus to another, most likely reflecting differences in the structure of the outer layers of the cell wall. The molecular bases for such differences remain to be identified. Studies of mycoses in experimental animals with induced or congenital deficiencies in the complement system demonstrate that complement is an important innate system for control of fungal infection. Contributions to host resistance include opsonization and generation of inflammatory mediators. Inflammation induced by chemotactic products of the complement system may contribute to the pathogenesis of some fungal infections.

Full Text

The Full Text of this article is available as a PDF (745.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Budzko D. B., Negroni R. Hemolytic, cytotoxic and complement inactivating properties of extracts of different species of Aspergillus. Mycopathologia. 1975 Dec 8;57(1):23–26. doi: 10.1007/BF00431173. [DOI] [PubMed] [Google Scholar]
  2. Burger E., Singer-Vermes L. M., Calich V. L. The role of C5 in experimental murine paracoccidioidomycosis. J Infect Dis. 1985 Aug;152(2):425–425. doi: 10.1093/infdis/152.2.425. [DOI] [PubMed] [Google Scholar]
  3. Byron J. K., Clemons K. V., McCusker J. H., Davis R. W., Stevens D. A. Pathogenicity of Saccharomyces cerevisiae in complement factor five-deficient mice. Infect Immun. 1995 Feb;63(2):478–485. doi: 10.1128/iai.63.2.478-485.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CINADER B., DUBISKI S., WARDLAW A. C. DISTRIBUTION, INHERITANCE, AND PROPERTIES OF AN ANTIGEN, MUB1, AND ITS RELATION TO HEMOLYTIC COMPLEMENT. J Exp Med. 1964 Nov 1;120:897–924. doi: 10.1084/jem.120.5.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cabib E., Bowers B., Sburlati A., Silverman S. J. Fungal cell wall synthesis: the construction of a biological structure. Microbiol Sci. 1988 Dec;5(12):370–375. [PubMed] [Google Scholar]
  6. Calich V. L., Coppi Vaz C. A., Burger E. PMN chemotactic factor produced by glass-adherent cells in the acute inflammation caused by Paracoccidioides brasiliensis. Br J Exp Pathol. 1985 Feb;66(1):57–65. [PMC free article] [PubMed] [Google Scholar]
  7. Cherniak R., Reiss E., Slodki M. E., Plattner R. D., Blumer S. O. Structure and antigenic activity of the capsular polysaccharide of Cryptococcus neoformans serotype A. Mol Immunol. 1980 Aug;17(8):1025–1032. doi: 10.1016/0161-5890(80)90096-6. [DOI] [PubMed] [Google Scholar]
  8. Chiang Y. C., Chuan M. T., Chang C. H., Yeh H. P., Lü Y. C. Cutaneous cryptococcosis--a case with C3 deposition on capsules. J Dermatol. 1985 Feb;12(1):79–84. doi: 10.1111/j.1346-8138.1985.tb01541.x. [DOI] [PubMed] [Google Scholar]
  9. Clas F., Loos M. Requirement for an additional serum factor essential for the antibody-independent activation of the classical complement sequence by Gram-negative bacteria. Infect Immun. 1982 Sep;37(3):935–939. doi: 10.1128/iai.37.3.935-939.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clemons K. V., McCusker J. H., Davis R. W., Stevens D. A. Comparative pathogenesis of clinical and nonclinical isolates of Saccharomyces cerevisiae. J Infect Dis. 1994 Apr;169(4):859–867. doi: 10.1093/infdis/169.4.859. [DOI] [PubMed] [Google Scholar]
  11. Collins H. L., Bancroft G. J. Cytokine enhancement of complement-dependent phagocytosis by macrophages: synergy of tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor for phagocytosis of Cryptococcus neoformans. Eur J Immunol. 1992 Jun;22(6):1447–1454. doi: 10.1002/eji.1830220617. [DOI] [PubMed] [Google Scholar]
  12. Cooper N. R. The classical complement pathway: activation and regulation of the first complement component. Adv Immunol. 1985;37:151–216. doi: 10.1016/s0065-2776(08)60340-5. [DOI] [PubMed] [Google Scholar]
  13. DI CARLO F. J., FIORE J. V. On the composition of zymosan. Science. 1958 Apr 4;127(3301):756–757. doi: 10.1126/science.127.3301.756-a. [DOI] [PubMed] [Google Scholar]
  14. Dahl M. V., Carpenter R. Polymorphonuclear leukocytes, complement, and Trichophyton rubrum. J Invest Dermatol. 1986 Feb;86(2):138–141. doi: 10.1111/1523-1747.ep12284169. [DOI] [PubMed] [Google Scholar]
  15. Davies S. F., Clifford D. P., Hoidal J. R., Repine J. E. Opsonic requirements for the uptake of Cryptococcus neoformans by human polymorphonuclear leukocytes and monocytes. J Infect Dis. 1982 Jun;145(6):870–874. doi: 10.1093/infdis/145.6.870. [DOI] [PubMed] [Google Scholar]
  16. Denning T. J., Davies R. R. Candida albicans and the chemotaxis of polymorphonuclear neutrophils. Sabouraudia. 1973 Nov;11(3):210–221. [PubMed] [Google Scholar]
  17. Devi S. J., Schneerson R., Egan W., Ulrich T. J., Bryla D., Robbins J. B., Bennett J. E. Cryptococcus neoformans serotype A glucuronoxylomannan-protein conjugate vaccines: synthesis, characterization, and immunogenicity. Infect Immun. 1991 Oct;59(10):3700–3707. doi: 10.1128/iai.59.10.3700-3707.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Diamond R. D., Erickson N. F., 3rd Chemotaxis of human neutrophils and monocytes induced by Cryptococcus neoformans. Infect Immun. 1982 Oct;38(1):380–382. doi: 10.1128/iai.38.1.380-382.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Diamond R. D., May J. E., Kane M. A., Frank M. M., Bennett J. E. The role of the classical and alternate complement pathways in host defenses against Cryptococcus neoformans infection. J Immunol. 1974 Jun;112(6):2260–2270. [PubMed] [Google Scholar]
  20. Diamond R. D., May J. E., Kane M., Frank M. M., Bennett J. E. The role of late complement components and the alternate complement pathway in experimental cryptococcosis. Proc Soc Exp Biol Med. 1973 Oct 1;144(1):312–315. doi: 10.3181/00379727-144-37580. [DOI] [PubMed] [Google Scholar]
  21. Edwards J. E., Jr, Gaither T. A., O'Shea J. J., Rotrosen D., Lawley T. J., Wright S. A., Frank M. M., Green I. Expression of specific binding sites on Candida with functional and antigenic characteristics of human complement receptors. J Immunol. 1986 Dec 1;137(11):3577–3583. [PubMed] [Google Scholar]
  22. Eigentler A., Schulz T. F., Larcher C., Breitwieser E. M., Myones B. L., Petzer A. L., Dierich M. P. C3bi-binding protein on Candida albicans: temperature-dependent expression and relationship to human complement receptor type 3. Infect Immun. 1989 Feb;57(2):616–622. doi: 10.1128/iai.57.2.616-622.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ellman L., Green I., Frank M. Genetically controlled total deficiency of the fourth component of complement in the guinea pig. Science. 1970 Oct 2;170(3953):74–75. doi: 10.1126/science.170.3953.74. [DOI] [PubMed] [Google Scholar]
  24. GADEBUSCH H. H. Natural host resistance to infection with Cryptococcus neoformans. I. The effect of the properdin system on the experimental disease. J Infect Dis. 1961 Sep-Oct;109:147–153. doi: 10.1093/infdis/109.2.147. [DOI] [PubMed] [Google Scholar]
  25. Galgiani J. N., Isenberg R. A., Stevens D. A. Chemotaxigenic activity of extracts from the mycelial and spherule phases of Coccidioides immitis for human polymorphonuclear leukocytes. Infect Immun. 1978 Sep;21(3):862–865. doi: 10.1128/iai.21.3.862-865.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Galgiani J. N., Yam P., Petz L. D., Williams P. L., Stevens D. A. Complement activation by Coccidioides immitis: in vitro and clinical studies. Infect Immun. 1980 Jun;28(3):944–949. doi: 10.1128/iai.28.3.944-949.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Gelfand J. A., Hurley D. L., Fauci A. S., Frank M. M. Role of complement in host defense against experimental disseminated candidiasis. J Infect Dis. 1978 Jul;138(1):9–16. doi: 10.1093/infdis/138.1.9. [DOI] [PubMed] [Google Scholar]
  28. Gilmore B. J., Retsinas E. M., Lorenz J. S., Hostetter M. K. An iC3b receptor on Candida albicans: structure, function, and correlates for pathogenicity. J Infect Dis. 1988 Jan;157(1):38–46. doi: 10.1093/infdis/157.1.38. [DOI] [PubMed] [Google Scholar]
  29. Goren M. B., Warren J. Immunofluorescence studies of reactions at the Cryptococcal capsule. J Infect Dis. 1968 Apr;118(2):215–229. doi: 10.1093/infdis/118.2.215. [DOI] [PubMed] [Google Scholar]
  30. Graybill J. R., Ahrens J. Immunization and complement interaction in host defense against murine Cryptococcosis. J Reticuloendothel Soc. 1981 Nov;30(5):347–357. [PubMed] [Google Scholar]
  31. Griffin F. M., Jr Roles of macrophage Fc and C3b receptors in phagocytosis of immunologically coated Cryptococcus neoformans. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3853–3857. doi: 10.1073/pnas.78.6.3853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Gustafson K. S., Vercellotti G. M., Bendel C. M., Hostetter M. K. Molecular mimicry in Candida albicans. Role of an integrin analogue in adhesion of the yeast to human endothelium. J Clin Invest. 1991 Jun;87(6):1896–1902. doi: 10.1172/JCI115214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hay R. J., Saeed E. N. The immunofluorescence staining of fungi in chronic dermatophyte infections. Clin Exp Dermatol. 1981 Mar;6(2):155–158. doi: 10.1111/j.1365-2230.1981.tb02283.x. [DOI] [PubMed] [Google Scholar]
  34. Hector R. F., Domer J. E., Carrow E. W. Immune responses to Candida albicans in genetically distinct mice. Infect Immun. 1982 Dec;38(3):1020–1028. doi: 10.1128/iai.38.3.1020-1028.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Hector R. F., Yee E., Collins M. S. Use of DBA/2N mice in models of systemic candidiasis and pulmonary and systemic aspergillosis. Infect Immun. 1990 May;58(5):1476–1478. doi: 10.1128/iai.58.5.1476-1478.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Heidenreich F., Dierich M. P. Candida albicans and Candida stellatoidea, in contrast to other Candida species, bind iC3b and C3d but not C3b. Infect Immun. 1985 Nov;50(2):598–600. doi: 10.1128/iai.50.2.598-600.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Henwick S., Hetherington S. V., Patrick C. C. Complement binding to Aspergillus conidia correlates with pathogenicity. J Lab Clin Med. 1993 Jul;122(1):27–35. [PubMed] [Google Scholar]
  38. Hess W. M., Stocks D. L. Surface characteristics of Aspergillus conidia. Mycologia. 1969 May-Jun;61(3):560–571. [PubMed] [Google Scholar]
  39. Horisberger M., Vonlanthen M. Location of mannan and chitin on thin sections of budding yeasts with gold markers. Arch Microbiol. 1977 Oct 24;115(1):1–7. doi: 10.1007/BF00427837. [DOI] [PubMed] [Google Scholar]
  40. Horstmann R. D., Pangburn M. K., Müller-Eberhard H. J. Species specificity of recognition by the alternative pathway of complement. J Immunol. 1985 Feb;134(2):1101–1104. [PubMed] [Google Scholar]
  41. Hostetter M. K., Lorenz J. S., Preus L., Kendrick K. E. The iC3b receptor on Candida albicans: subcellular localization and modulation of receptor expression by glucose. J Infect Dis. 1990 Apr;161(4):761–768. doi: 10.1093/infdis/161.4.761. [DOI] [PubMed] [Google Scholar]
  42. Hostetter M. K., Thomas M. L., Rosen F. S., Tack B. F. Binding of C3b proceeds by a transesterification reaction at the thiolester site. Nature. 1982 Jul 1;298(5869):72–75. doi: 10.1038/298072b0. [DOI] [PubMed] [Google Scholar]
  43. Houpt D. C., Pfrommer G. S., Young B. J., Larson T. A., Kozel T. R. Occurrences, immunoglobulin classes, and biological activities of antibodies in normal human serum that are reactive with Cryptococcus neoformans glucuronoxylomannan. Infect Immun. 1994 Jul;62(7):2857–2864. doi: 10.1128/iai.62.7.2857-2864.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. James P. G., Cherniak R., Jones R. G., Stortz C. A., Reiss E. Cell-wall glucans of Cryptococcus neoformans Cap 67. Carbohydr Res. 1990 Apr 2;198(1):23–38. doi: 10.1016/0008-6215(90)84273-w. [DOI] [PubMed] [Google Scholar]
  45. Kawasaki T., Etoh R., Yamashina I. Isolation and characterization of a mannan-binding protein from rabbit liver. Biochem Biophys Res Commun. 1978 Apr 14;81(3):1018–1024. doi: 10.1016/0006-291x(78)91452-3. [DOI] [PubMed] [Google Scholar]
  46. Keller R. G., Pfrommer G. S., Kozel T. R. Occurrences, specificities, and functions of ubiquitous antibodies in human serum that are reactive with the Cryptococcus neoformans cell wall. Infect Immun. 1994 Jan;62(1):215–220. doi: 10.1128/iai.62.1.215-220.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Kozel T. R., Brown R. R., Pfrommer G. S. Activation and binding of C3 by Candida albicans. Infect Immun. 1987 Aug;55(8):1890–1894. doi: 10.1128/iai.55.8.1890-1894.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Kozel T. R., Highison B., Stratton C. J. Localization on encapsulated Cryptococcus neoformans of serum components opsonic for phagocytosis by macrophages and neutrophils. Infect Immun. 1984 Feb;43(2):574–579. doi: 10.1128/iai.43.2.574-579.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Kozel T. R., Pfrommer G. S. Activation of the complement system by Cryptococcus neoformans leads to binding of iC3b to the yeast. Infect Immun. 1986 Apr;52(1):1–5. doi: 10.1128/iai.52.1.1-5.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Kozel T. R., Pfrommer G. S., Guerlain A. S., Highison B. A., Highison G. J. Strain variation in phagocytosis of Cryptococcus neoformans: dissociation of susceptibility to phagocytosis from activation and binding of opsonic fragments of C3. Infect Immun. 1988 Nov;56(11):2794–2800. doi: 10.1128/iai.56.11.2794-2800.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Kozel T. R., Wilson M. A., Farrell T. P., Levitz S. M. Activation of C3 and binding to Aspergillus fumigatus conidia and hyphae. Infect Immun. 1989 Nov;57(11):3412–3417. doi: 10.1128/iai.57.11.3412-3417.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Kozel T. R., Wilson M. A., Murphy J. W. Early events in initiation of alternative complement pathway activation by the capsule of Cryptococcus neoformans. Infect Immun. 1991 Sep;59(9):3101–3110. doi: 10.1128/iai.59.9.3101-3110.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Kozel T. R., Wilson M. A., Pfrommer G. S., Schlageter A. M. Activation and binding of opsonic fragments of C3 on encapsulated Cryptococcus neoformans by using an alternative complement pathway reconstituted from six isolated proteins. Infect Immun. 1989 Jul;57(7):1922–1927. doi: 10.1128/iai.57.7.1922-1927.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Law S. K., Levine R. P. Interaction between the third complement protein and cell surface macromolecules. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2701–2705. doi: 10.1073/pnas.74.7.2701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Law S. K., Lichtenberg N. A., Levine R. P. Evidence for an ester linkage between the labile binding site of C3b and receptive surfaces. J Immunol. 1979 Sep;123(3):1388–1394. [PubMed] [Google Scholar]
  56. Law S. K., Minich T. M., Levine R. P. Binding reaction between the third human complement protein and small molecules. Biochemistry. 1981 Dec 22;20(26):7457–7463. doi: 10.1021/bi00529a020. [DOI] [PubMed] [Google Scholar]
  57. Laxalt K. A., Kozel T. R. Chemotaxigenesis and activation of the alternative complement pathway by encapsulated and non-encapsulated Cryptococcus neoformans. Infect Immun. 1979 Nov;26(2):435–440. doi: 10.1128/iai.26.2.435-440.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Lehmann P. F., Reiss E. Comparison by ELISA of serum anti-Candida albicans mannan IgG levels of a normal population and in diseased patients. Mycopathologia. 1980 Mar 17;70(2):89–93. doi: 10.1007/BF00443073. [DOI] [PubMed] [Google Scholar]
  59. Levitz S. M., Tabuni A. Binding of Cryptococcus neoformans by human cultured macrophages. Requirements for multiple complement receptors and actin. J Clin Invest. 1991 Feb;87(2):528–535. doi: 10.1172/JCI115027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Lovchik J. A., Lipscomb M. F. Role for C5 and neutrophils in the pulmonary intravascular clearance of circulating Cryptococcus neoformans. Am J Respir Cell Mol Biol. 1993 Dec;9(6):617–627. doi: 10.1165/ajrcmb/9.6.617. [DOI] [PubMed] [Google Scholar]
  61. Lu J. H., Thiel S., Wiedemann H., Timpl R., Reid K. B. Binding of the pentamer/hexamer forms of mannan-binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q. J Immunol. 1990 Mar 15;144(6):2287–2294. [PubMed] [Google Scholar]
  62. Macher A. M., Bennett J. E., Gadek J. E., Frank M. M. Complement depletion in cryptococcal sepsis. J Immunol. 1978 May;120(5):1686–1690. [PubMed] [Google Scholar]
  63. Mitchell T. G., Friedman L. In vitro phagocytosis and intracellular fate of variously encapsulated strains of Cryptococcus neoformans. Infect Immun. 1972 Apr;5(4):491–498. doi: 10.1128/iai.5.4.491-498.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Moors M. A., Stull T. L., Blank K. J., Buckley H. R., Mosser D. M. A role for complement receptor-like molecules in iron acquisition by Candida albicans. J Exp Med. 1992 Jun 1;175(6):1643–1651. doi: 10.1084/jem.175.6.1643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Morrison R. P., Cutler J. E. In vitro studies of the interaction of murine phagocytic cells with Candida albicans. J Reticuloendothel Soc. 1981 Jan;29(1):23–34. [PubMed] [Google Scholar]
  66. Mukherjee J., Nussbaum G., Scharff M. D., Casadevall A. Protective and nonprotective monoclonal antibodies to Cryptococcus neoformans originating from one B cell. J Exp Med. 1995 Jan 1;181(1):405–409. doi: 10.1084/jem.181.1.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Mukherjee J., Scharff M. D., Casadevall A. Protective murine monoclonal antibodies to Cryptococcus neoformans. Infect Immun. 1992 Nov;60(11):4534–4541. doi: 10.1128/iai.60.11.4534-4541.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Munk M. E., Da Silva W. D. Activation of human complement system Paracoccidioides brasiliensis and its deposition on the yeast form cell surface. J Med Vet Mycol. 1992;30(6):481–484. [PubMed] [Google Scholar]
  69. Munk M. E., Kajdacsy-Balla A., Del Negro G., Cuce L. C., Da Silva W. D. Activation of human complement system in paracoccidioidomycosis. J Med Vet Mycol. 1992;30(4):317–321. doi: 10.1080/02681219280000411. [DOI] [PubMed] [Google Scholar]
  70. Müller-Eberhard H. J., Fjellström K. E. Isolation of the anticomplementary protein from cobra venom and its mode of action on C3. J Immunol. 1971 Dec;107(6):1666–1672. [PubMed] [Google Scholar]
  71. Nilsson U. R., Müller-Eberhard H. J. Deficiency of the fifth component of complement in mice with an inherited complement defect. J Exp Med. 1967 Jan 1;125(1):1–16. doi: 10.1084/jem.125.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Ohta M., Okada M., Yamashina I., Kawasaki T. The mechanism of carbohydrate-mediated complement activation by the serum mannan-binding protein. J Biol Chem. 1990 Feb 5;265(4):1980–1984. [PubMed] [Google Scholar]
  73. Ollert M. W., Wadsworth E., Calderone R. A. Reduced expression of the functionally active complement receptor for iC3b but not for C3d on an avirulent mutant of Candida albicans. Infect Immun. 1990 Apr;58(4):909–913. doi: 10.1128/iai.58.4.909-913.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. PILLEMER L., BLUM L., LEPOW I. H., ROSS O. A., TODD E. W., WARDLAW A. C. The properdin system and immunity. I. Demonstration and isolation of a new serum protein, properdin, and its role in immune phenomena. Science. 1954 Aug 20;120(3112):279–285. doi: 10.1126/science.120.3112.279. [DOI] [PubMed] [Google Scholar]
  75. Pangburn M. K., Müller-Eberhard H. J. Kinetic and thermodynamic analysis of the control of C3b by the complement regulatory proteins factors H and I. Biochemistry. 1983 Jan 4;22(1):178–185. doi: 10.1021/bi00270a026. [DOI] [PubMed] [Google Scholar]
  76. Pangburn M. K., Müller-Eberhard H. J. The alternative pathway of complement. Springer Semin Immunopathol. 1984;7(2-3):163–192. doi: 10.1007/BF01893019. [DOI] [PubMed] [Google Scholar]
  77. Pangburn M. K., Schreiber R. D., Müller-Eberhard H. J. Human complement C3b inactivator: isolation, characterization, and demonstration of an absolute requirement for the serum protein beta1H for cleavage of C3b and C4b in solution. J Exp Med. 1977 Jul 1;146(1):257–270. doi: 10.1084/jem.146.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Pfrommer G. S., Dickens S. M., Wilson M. A., Young B. J., Kozel T. R. Accelerated decay of C3b to iC3b when C3b is bound to the Cryptococcus neoformans capsule. Infect Immun. 1993 Oct;61(10):4360–4366. doi: 10.1128/iai.61.10.4360-4366.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Poulain D., Tronchin G., Dubremetz J. F., Biguet J. Ultrastructure of the cell wall of Candida albicans blastospores: study of its constitutive layers by the use of a cytochemical technique revealing polysaccharides. Ann Microbiol (Paris) 1978 Feb-Mar;129(2):141–153. [PubMed] [Google Scholar]
  80. ROSENBERG L. T., TACHIBANA D. K. Activity of mouse complement. J Immunol. 1962 Dec;89:861–867. [PubMed] [Google Scholar]
  81. Ratnoff W. D., Pepple J. M., Winkelstein J. A. Activation of the alternative complement pathway by Histoplasma capsulatum. Infect Immun. 1980 Oct;30(1):147–149. doi: 10.1128/iai.30.1.147-149.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Ray T. L., Wuepper K. D. Activation of the alternative (properdin) pathway of complement by Candida albicans and related species. J Invest Dermatol. 1976 Dec;67(6):700–703. doi: 10.1111/1523-1747.ep12598581. [DOI] [PubMed] [Google Scholar]
  83. Ray T. L., Wuepper K. D. Experimental cutaneous candidiasis in rodents; II. Role of the stratum corneum barrier and serum complement as a mediator of a protective infalmmatory response. Arch Dermatol. 1978 Apr;114(4):539–543. doi: 10.1001/archderm.114.4.539. [DOI] [PubMed] [Google Scholar]
  84. Rhodes J. C. Contribution of complement component C5 to the pathogenesis of experimental murine cryptococcosis. Sabouraudia. 1985 Jun;23(3):225–234. doi: 10.1080/00362178585380331. [DOI] [PubMed] [Google Scholar]
  85. Rhodes J. C., Wicker L. S., Urba W. J. Genetic control of susceptibility to Cryptococcus neoformans in mice. Infect Immun. 1980 Aug;29(2):494–499. doi: 10.1128/iai.29.2.494-499.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Sahu A., Kozel T. R., Pangburn M. K. Specificity of the thioester-containing reactive site of human C3 and its significance to complement activation. Biochem J. 1994 Sep 1;302(Pt 2):429–436. doi: 10.1042/bj3020429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Sohnle P. G., Frank M. M., Kirkpatrick C. H. Deposition of complement components in the cutaneous lesions of chronic mucocutaneous candidiasis. Clin Immunol Immunopathol. 1976 May;5(3):340–350. doi: 10.1016/0090-1229(76)90043-x. [DOI] [PubMed] [Google Scholar]
  88. Sohnle P. G., Kirkpatrick C. H. Deposition of complement in the lesions of experimental cutaneous candidiasis in guinea pigs. J Cutan Pathol. 1976;3(5):232–238. doi: 10.1111/j.1600-0560.1976.tb00868.x. [DOI] [PubMed] [Google Scholar]
  89. Sturtevant J. E., Latgé J. P. Interactions between conidia of Aspergillus fumigatus and human complement component C3. Infect Immun. 1992 May;60(5):1913–1918. doi: 10.1128/iai.60.5.1913-1918.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Sturtevant J., Latgé J. P. Participation of complement in the phagocytosis of the conidia of Aspergillus fumigatus by human polymorphonuclear cells. J Infect Dis. 1992 Sep;166(3):580–586. doi: 10.1093/infdis/166.3.580. [DOI] [PubMed] [Google Scholar]
  91. Swan J. W., Dahl M. V., Coppo P. A., Hammerschmidt D. E. Complement activation by trichophyton rubrum. J Invest Dermatol. 1983 Mar;80(3):156–158. doi: 10.1111/1523-1747.ep12533147. [DOI] [PubMed] [Google Scholar]
  92. Tagami H., Natsume N., Aoshima T., Inoue F., Suehisa S., Yamada M. Analysis of transepidermal leukocyte chemotaxis in experimental dermatophytosis in guinea pigs. Arch Dermatol Res. 1982;273(3-4):205–217. doi: 10.1007/BF00409248. [DOI] [PubMed] [Google Scholar]
  93. Thong Y. H., Ferrante A. Alternative pathway of complement activation by Candida albicans. Aust N Z J Med. 1978 Dec;8(6):620–622. doi: 10.1111/j.1445-5994.1978.tb04850.x. [DOI] [PubMed] [Google Scholar]
  94. Truelsen K., Young T., Kozel T. R. In vivo complement activation and binding of C3 to encapsulated Cryptococcus neoformans. Infect Immun. 1992 Sep;60(9):3937–3939. doi: 10.1128/iai.60.9.3937-3939.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Van den Berg C. W., Aerts P. C., Van Dijk H. In vivo anti-complementary activities of the cobra venom factors from Naja naja and Naja haje. J Immunol Methods. 1991 Feb 15;136(2):287–294. doi: 10.1016/0022-1759(91)90015-8. [DOI] [PubMed] [Google Scholar]
  96. Vogel C. W., Smith C. A., Müller-Eberhard H. J. Cobra venom factor: structural homology with the third component of human complement. J Immunol. 1984 Dec;133(6):3235–3241. [PubMed] [Google Scholar]
  97. Washburn R. G., Bryant-Varela B. J., Julian N. C., Bennett J. E. Differences in Cryptococcus neoformans capsular polysaccharide structure influence assembly of alternative complement pathway C3 convertase on fungal surfaces. Mol Immunol. 1991 Apr-May;28(4-5):465–470. doi: 10.1016/0161-5890(91)90160-l. [DOI] [PubMed] [Google Scholar]
  98. Washburn R. G., DeHart D. J., Agwu D. E., Bryant-Varela B. J., Julian N. C. Aspergillus fumigatus complement inhibitor: production, characterization, and purification by hydrophobic interaction and thin-layer chromatography. Infect Immun. 1990 Nov;58(11):3508–3515. doi: 10.1128/iai.58.11.3508-3515.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Washburn R. G., Hammer C. H., Bennett J. E. Inhibition of complement by culture supernatants of Aspergillus fumigatus. J Infect Dis. 1986 Dec;154(6):944–951. doi: 10.1093/infdis/154.6.944. [DOI] [PubMed] [Google Scholar]
  100. Wilson M. A., Kozel T. R. Contribution of antibody in normal human serum to early deposition of C3 onto encapsulated and nonencapsulated Cryptococcus neoformans. Infect Immun. 1992 Mar;60(3):754–761. doi: 10.1128/iai.60.3.754-761.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Young B. J., Kozel T. R. Effects of strain variation, serotype, and structural modification on kinetics for activation and binding of C3 to Cryptococcus neoformans. Infect Immun. 1993 Jul;61(7):2966–2972. doi: 10.1128/iai.61.7.2966-2972.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. de Messias I. T., Mohren D. Classical and alternative complement pathway activation in paracoccidioidomycosis. J Investig Allergol Clin Immunol. 1994 Mar-Apr;4(2):91–95. [PubMed] [Google Scholar]

Articles from Clinical Microbiology Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES