Skip to main content
Heart logoLink to Heart
. 1999 Jan;81(1):67–72. doi: 10.1136/hrt.81.1.67

Pulmonary and caval flow dynamics after total cavopulmonary connection

K Houlind 1, E Stenbog 1, K Sorensen 1, K Emmertsen 1, O Hansen 1, L Rybro 1, V Hjortdal 1
PMCID: PMC1728916  PMID: 10220548

Abstract

Objective—To assess flow dynamics after total cavopulmonary connection (TCPC).
Design—Cross-sectional study.
Setting—Aarhus University Hospital. 
Patients—Seven patients (mean age 9 (4-18) years) who had previously undergone a lateral tunnel TCPC mean 2 (0.3-5) years earlier. 
Interventions—Pressure recordings (cardiac catheterisation), flow volume, and temporal changes of flow in the lateral tunnel, superior vena cava, and right and left pulmonary arteries (magnetic resonance velocity mapping).
Results—Superior vena cava flow was similar to lateral tunnel flow (1.7 (0.6-1.9) v 1.3 (0.9-2.4) l/min*m2) (NS), and right pulmonary artery flow was higher than left pulmonary artery flow (1.7 (0.6-4.3) v 1.1 (0.8-2.5) l/min*m2, p < 0.05). The flow pulsatility index was highest in the lateral tunnel (2.0 (1.1-8.5)), lowest in the superior vena cava (0.8 (0.5-2.4)), and intermediate in the left and right pulmonary arteries (1.6 (0.9-2.0) and 1.2 (0.4-1.9), respectively). Flow and pressure waveforms were biphasic with maxima in atrial systole and late ventricular systole.
Conclusions—Following a standard lateral tunnel TCPC, flow returning via the superior vena cava is not lower than flow returning via the inferior vena cava as otherwise seen in healthy subjects; flow distribution to the pulmonary arteries is optimal; and some pulsatility is preserved primarily in the lateral tunnel and the corresponding pulmonary artery. This study provides in vivo data for future in vitro and computer model studies.

 Keywords: blood flow dynamics;  total cavopulmonary connection;  congenital heart disease

Full Text

The Full Text of this article is available as a PDF (116.4 KB).

Figure 1  .

Figure 1  

Schematic drawing of the TCPC and the planes used for MR flow measurements. LPA, left pulmonary artery; LSVC, left superior vena cava; LT, lateral tunnel; RPA, right pulmonary artery; RSVC, right superior vena cava

Figure 2  .

Figure 2  

Flow volume curves from the four measurement planes. The instantaneous pressure difference between the lateral tunnel (LT) and the left pulmonary artery (LPA) and between the superior vena cava (SVC) and the right pulmonary artery (RPA) in a typical patient (patient 4). The ECG is shown at the bottom. The flow variation in the lateral tunnel resembles the variations in the pressure gradient between the lateral tunnel and the left pulmonary artery. Flow and pressure curves from the lateral tunnel−left pulmonary artery and from the superior vena cava−right pulmonary artery look similar.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel F. L., Waldhausen J. A. Respiratory and cardiac effects on venous return. Am Heart J. 1969 Aug;78(2):266–275. doi: 10.1016/0002-8703(69)90019-2. [DOI] [PubMed] [Google Scholar]
  2. Clarke C. P., Kahn D. R., Dufek J. H., Sloan H. The effects of nonpulsatile blood flow on canine lungs. Ann Thorac Surg. 1968 Nov;6(5):450–457. doi: 10.1016/s0003-4975(10)66052-3. [DOI] [PubMed] [Google Scholar]
  3. Cloutier A., Ash J. M., Smallhorn J. F., Williams W. G., Trusler G. A., Rowe R. D., Rabinovitch M. Abnormal distribution of pulmonary blood flow after the Glenn shunt or Fontan procedure: risk of development of arteriovenous fistulae. Circulation. 1985 Sep;72(3):471–479. doi: 10.1161/01.cir.72.3.471. [DOI] [PubMed] [Google Scholar]
  4. Dubini G., de Leval M. R., Pietrabissa R., Montevecchi F. M., Fumero R. A numerical fluid mechanical study of repaired congenital heart defects. Application to the total cavopulmonary connection. J Biomech. 1996 Jan;29(1):111–121. doi: 10.1016/0021-9290(95)00021-6. [DOI] [PubMed] [Google Scholar]
  5. Firmin D. N., Nayler G. L., Klipstein R. H., Underwood S. R., Rees R. S., Longmore D. B. In vivo validation of MR velocity imaging. J Comput Assist Tomogr. 1987 Sep-Oct;11(5):751–756. doi: 10.1097/00004728-198709000-00001. [DOI] [PubMed] [Google Scholar]
  6. Fogel M. A., Weinberg P. M., Hoydu A., Hubbard A., Rychik J., Jacobs M., Fellows K. E., Haselgrove J. The nature of flow in the systemic venous pathway measured by magnetic resonance blood tagging in patients having the Fontan operation. J Thorac Cardiovasc Surg. 1997 Dec;114(6):1032–1041. doi: 10.1016/S0022-5223(97)70017-5. [DOI] [PubMed] [Google Scholar]
  7. Kaulitz R., Luhmer I., Kallfelz H. C. Pulsed Doppler echocardiographic assessment of patterns of venous flow after the modified Fontan operation: potential clinical implications. Cardiol Young. 1998 Jan;8(1):54–62. doi: 10.1017/s1047951100004637. [DOI] [PubMed] [Google Scholar]
  8. Low H. T., Chew Y. T., Lee C. N. Flow studies on atriopulmonary and cavopulmonary connections of the Fontan operations for congenital heart defects. J Biomed Eng. 1993 Jul;15(4):303–307. doi: 10.1016/0141-5425(93)90006-k. [DOI] [PubMed] [Google Scholar]
  9. Matsuda H., Kawashima Y., Takano H., Miyamoto K., Mori T. Experimental evaluation of atrial function in right atrium--pulmonary artery conduit operation for tricuspid atresia. J Thorac Cardiovasc Surg. 1981 May;81(5):762–767. [PubMed] [Google Scholar]
  10. Mavroudis C. To pulse or not to pulse. Ann Thorac Surg. 1978 Mar;25(3):259–271. doi: 10.1016/s0003-4975(10)63539-4. [DOI] [PubMed] [Google Scholar]
  11. Milnor W. R., Conti C. R., Lewis K. B., O'Rourke M. F. Pulmonary arterial pulse wave velocity and impedance in man. Circ Res. 1969 Dec;25(6):637–649. doi: 10.1161/01.res.25.6.637. [DOI] [PubMed] [Google Scholar]
  12. Mohiaddin R. H., Wann S. L., Underwood R., Firmin D. N., Rees S., Longmore D. B. Vena caval flow: assessment with cine MR velocity mapping. Radiology. 1990 Nov;177(2):537–541. doi: 10.1148/radiology.177.2.2217797. [DOI] [PubMed] [Google Scholar]
  13. Moore J. W., Kirby W. C., Madden W. A., Gaither N. S. Development of pulmonary arteriovenous malformations after modified Fontan operations. J Thorac Cardiovasc Surg. 1989 Dec;98(6):1045–1050. [PubMed] [Google Scholar]
  14. Muster A. J., Zales V. R., Ilbawi M. N., Backer C. L., Duffy C. E., Mavroudis C. Biventricular repair of hypoplastic right ventricle assisted by pulsatile bidirectional cavopulmonary anastomosis. J Thorac Cardiovasc Surg. 1993 Jan;105(1):112–119. [PubMed] [Google Scholar]
  15. Nayler G. L., Firmin D. N., Longmore D. B. Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr. 1986 Sep-Oct;10(5):715–722. doi: 10.1097/00004728-198609000-00001. [DOI] [PubMed] [Google Scholar]
  16. Paz R., Mohiaddin R. H., Longmore D. B. Magnetic resonance assessment of the pulmonary arterial trunk anatomy, flow, pulsatility and distensibility. Eur Heart J. 1993 Nov;14(11):1524–1530. doi: 10.1093/eurheartj/14.11.1524. [DOI] [PubMed] [Google Scholar]
  17. Rebergen S. A., Ottenkamp J., Doornbos J., van der Wall E. E., Chin J. G., de Roos A. Postoperative pulmonary flow dynamics after Fontan surgery: assessment with nuclear magnetic resonance velocity mapping. J Am Coll Cardiol. 1993 Jan;21(1):123–131. doi: 10.1016/0735-1097(93)90726-h. [DOI] [PubMed] [Google Scholar]
  18. Redington A. N., Penny D., Shinebourne E. A. Pulmonary blood flow after total cavopulmonary shunt. Br Heart J. 1991 Apr;65(4):213–217. doi: 10.1136/hrt.65.4.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Salim M. A., DiSessa T. G., Arheart K. L., Alpert B. S. Contribution of superior vena caval flow to total cardiac output in children. A Doppler echocardiographic study. Circulation. 1995 Oct 1;92(7):1860–1865. doi: 10.1161/01.cir.92.7.1860. [DOI] [PubMed] [Google Scholar]
  20. Sharma S., Goudy S., Walker P., Panchal S., Ensley A., Kanter K., Tam V., Fyfe D., Yoganathan A. In vitro flow experiments for determination of optimal geometry of total cavopulmonary connection for surgical repair of children with functional single ventricle. J Am Coll Cardiol. 1996 Apr;27(5):1264–1269. doi: 10.1016/0735-1097(95)00598-6. [DOI] [PubMed] [Google Scholar]
  21. Slavik Z., Webber S. A., Lamb R. K., Horvath P., LeBlanc J. G., Keeton B. R., Monro J. L., Tax P., Tuma S., Reich O. Influence of bidirectional superior cavopulmonary anastomosis on pulmonary arterial growth. Am J Cardiol. 1995 Nov 15;76(14):1085–1087. doi: 10.1016/s0002-9149(99)80307-5. [DOI] [PubMed] [Google Scholar]
  22. Stavri G. T., Zachary I. C., Baskerville P. A., Martin J. F., Erusalimsky J. D. Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia. Circulation. 1995 Jul 1;92(1):11–14. doi: 10.1161/01.cir.92.1.11. [DOI] [PubMed] [Google Scholar]
  23. Stavri G. T., Zachary I. C., Baskerville P. A., Martin J. F., Erusalimsky J. D. Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia. Circulation. 1995 Jul 1;92(1):11–14. doi: 10.1161/01.cir.92.1.11. [DOI] [PubMed] [Google Scholar]
  24. Stavri G. T., Zachary I. C., Baskerville P. A., Martin J. F., Erusalimsky J. D. Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia. Circulation. 1995 Jul 1;92(1):11–14. doi: 10.1161/01.cir.92.1.11. [DOI] [PubMed] [Google Scholar]
  25. Van Rossum A. C., Sprenger M., Visser F. C., Peels K. H., Valk J., Roos J. P. An in vivo validation of quantitative blood flow imaging in arteries and veins using magnetic resonance phase-shift techniques. Eur Heart J. 1991 Feb;12(2):117–126. doi: 10.1093/oxfordjournals.eurheartj.a059857. [DOI] [PubMed] [Google Scholar]
  26. Walker P. G., Cranney G. B., Scheidegger M. B., Waseleski G., Pohost G. M., Yoganathan A. P. Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging. 1993 May-Jun;3(3):521–530. doi: 10.1002/jmri.1880030315. [DOI] [PubMed] [Google Scholar]
  27. de Leval M. R., Dubini G., Migliavacca F., Jalali H., Camporini G., Redington A., Pietrabissa R. Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections. J Thorac Cardiovasc Surg. 1996 Mar;111(3):502–513. doi: 10.1016/s0022-5223(96)70302-1. [DOI] [PubMed] [Google Scholar]
  28. de Leval M. R., Kilner P., Gewillig M., Bull C. Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience. J Thorac Cardiovasc Surg. 1988 Nov;96(5):682–695. [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES