Abstract
Objective—To investigate the specificity and sensitivity of the combination of redistribution in exercise thallium-201 single photon emission computed tomography (SPECT) and exercise induced ST elevation for detecting the viable myocardium in patients with acute myocardial infarction. Design—37 patients were studied within seven weeks of onset of Q wave myocardial infarction (anterior in 22, inferior in 15). All patients underwent exercise four hour redistribution thallium-201 SPECT and positron emission tomography using fluorine-18-fluorodeoxyglucose (FDG) and nitrogen-13 ammonia under fasting conditions. Results—Sixteen patients showed exercise induced ST elevation ⩾ 1.5 mm, and 15 of these had increased FDG uptake in the infarct region. Eleven of 16 patients (10 of 11 patients with anterior infarctions) with irreversible thallium-201 defects and increased FDG uptake showed exercise induced ST elevation. The sensitivity, specificity, and predictive accuracy of redistribution, exercise induced ST segment elevation, or both for detecting increased FDG uptake were 82%, 75%, and 67% (94%, 75%, and 91% for anterior infarctions), respectively. Conclusions—In patients with acute Q wave myocardial infarction, the combination of redistribution in exercise thallium-201 SPECT and exercise induced ST elevation can detect the viable myocardium in the infarct region with high sensitivity and specificity, especially in patients with anterior infarctions. Keywords: acute myocardial infarction; viability; exercise induced ST elevation; exercise thallium-201 SPECT
Full Text
The Full Text of this article is available as a PDF (138.9 KB).
Figure 1 .
Schematic diagram of nine segments of the left ventricle.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blood D. K., McCarthy D. M., Sciacca R. R., Cannon P. J. Comparison of single-dose and double-dose thallium-201 myocardial perfusion scintigraphy for the detection of coronary artery disease and prior myocardial infarction. Circulation. 1978 Nov;58(5):777–788. doi: 10.1161/01.cir.58.5.777. [DOI] [PubMed] [Google Scholar]
- Bonow R. O., Dilsizian V., Cuocolo A., Bacharach S. L. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation. 1991 Jan;83(1):26–37. doi: 10.1161/01.cir.83.1.26. [DOI] [PubMed] [Google Scholar]
- Brunken R. C., Kottou S., Nienaber C. A., Schwaiger M., Ratib O. M., Phelps M. E., Schelbert H. R. PET detection of viable tissue in myocardial segments with persistent defects at T1-201 SPECT. Radiology. 1989 Jul;172(1):65–73. doi: 10.1148/radiology.172.1.2787037. [DOI] [PubMed] [Google Scholar]
- Chahine R. A., Raizner A. E., Ishimori T. The clinical significance of exercise-induced ST-segment elevation. Circulation. 1976 Aug;54(2):209–213. doi: 10.1161/01.cir.54.2.209. [DOI] [PubMed] [Google Scholar]
- Cloninger K. G., DePuey E. G., Garcia E. V., Roubin G. S., Robbins W. L., Nody A., DePasquale E. E., Berger H. J. Incomplete redistribution in delayed thallium-201 single photon emission computed tomographic (SPECT) images: an overestimation of myocardial scarring. J Am Coll Cardiol. 1988 Oct;12(4):955–963. doi: 10.1016/0735-1097(88)90461-5. [DOI] [PubMed] [Google Scholar]
- Cohen M., Rentrop K. P. Limitation of myocardial ischemia by collateral circulation during sudden controlled coronary artery occlusion in human subjects: a prospective study. Circulation. 1986 Sep;74(3):469–476. doi: 10.1161/01.cir.74.3.469. [DOI] [PubMed] [Google Scholar]
- Dilsizian V., Rocco T. P., Freedman N. M., Leon M. B., Bonow R. O. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med. 1990 Jul 19;323(3):141–146. doi: 10.1056/NEJM199007193230301. [DOI] [PubMed] [Google Scholar]
- Dunn R. F., Bailey I. K., Uren R., Kelly D. T. Exercise-induced ST-segment elevation. Correlation of thallium-201 myocardial perfusion scanning and coronary arteriography. Circulation. 1980 May;61(5):989–995. doi: 10.1161/01.cir.61.5.989. [DOI] [PubMed] [Google Scholar]
- Fox K. M., Jonathan A., Selwyn A. Significance of exercise induced ST segment elevation in patients with previous myocardial infarction. Br Heart J. 1983 Jan;49(1):15–19. doi: 10.1136/hrt.49.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gewirtz H., Sullivan M., O'Reilly G., Winter S., Most A. S. Role of myocardial ischemia in the genesis of stress-induced S-T segment elevation in previous anterior myocardial infarction. Am J Cardiol. 1983 May 1;51(8):1289–1293. doi: 10.1016/0002-9149(83)90300-4. [DOI] [PubMed] [Google Scholar]
- Gropler R. J., Siegel B. A., Lee K. J., Moerlein S. M., Perry D. J., Bergmann S. R., Geltman E. M. Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans. J Nucl Med. 1990 Nov;31(11):1749–1756. [PubMed] [Google Scholar]
- Haines D. E., Beller G. A., Watson D. D., Kaiser D. L., Sayre S. L., Gibson R. S. Exercise-induced ST segment elevation 2 weeks after uncomplicated myocardial infarction: contributing factors and prognostic significance. J Am Coll Cardiol. 1987 May;9(5):996–1003. doi: 10.1016/s0735-1097(87)80299-1. [DOI] [PubMed] [Google Scholar]
- Hamacher K., Coenen H. H., Stöcklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986 Feb;27(2):235–238. [PubMed] [Google Scholar]
- Kiat H., Berman D. S., Maddahi J., De Yang L., Van Train K., Rozanski A., Friedman J. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol. 1988 Dec;12(6):1456–1463. doi: 10.1016/s0735-1097(88)80009-3. [DOI] [PubMed] [Google Scholar]
- Lahiri A., Balasubramanian V., Millar Craig M. W., Crawley J., Raftery E. B. Exercise-induced ST segment elevation. Electrocardiographic, angiographic, and scintigraphic evaluation. Br Heart J. 1980 May;43(5):582–588. doi: 10.1136/hrt.43.5.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margonato A., Ballarotto C., Bonetti F., Cappelletti A., Sciammarella M., Cianflone D., Chierchia S. L. Assessment of residual tissue viability by exercise testing in recent myocardial infarction: comparison of the electrocardiogram and myocardial perfusion scintigraphy. J Am Coll Cardiol. 1992 Apr;19(5):948–952. doi: 10.1016/0735-1097(92)90276-s. [DOI] [PubMed] [Google Scholar]
- Margonato A., Chierchia S. L., Xuereb R. G., Xuereb M., Fragasso G., Cappelletti A., Landoni C., Lucignani G., Fazio F. Specificity and sensitivity of exercise-induced ST segment elevation for detection of residual viability: comparison with fluorodeoxyglucose and positron emission tomography. J Am Coll Cardiol. 1995 Apr;25(5):1032–1038. doi: 10.1016/0735-1097(94)00539-3. [DOI] [PubMed] [Google Scholar]
- Mulholland G. K., Kilbourn M. R., Moskwa J. J. Direct simultaneous production of [15O]water and [13N]ammonia or [18F]fluoride ion by 26 MeV proton irradiation of a double chamber water target. Int J Rad Appl Instrum A. 1990;41(12):1193–1199. doi: 10.1016/0883-2889(90)90206-v. [DOI] [PubMed] [Google Scholar]
- Ogawa T., Ishii M., Iida K., Iida K., Ajisaka R., Yamaguchi I., Sugishita Y., Ito I. Mechanisms of stress-induced ST elevation and negative T-wave normalization studied by serial cardiokymogram in patients with a previous myocardial infarction. Am J Cardiol. 1990 Apr 15;65(15):962–966. doi: 10.1016/0002-9149(90)90997-f. [DOI] [PubMed] [Google Scholar]
- Piérard L. A., De Landsheere C. M., Berthe C., Rigo P., Kulbertus H. E. Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: comparison with positron emission tomography. J Am Coll Cardiol. 1990 Apr;15(5):1021–1031. doi: 10.1016/0735-1097(90)90236-i. [DOI] [PubMed] [Google Scholar]
- Pohost G. M., Zir L. M., Moore R. H., McKusick K. A., Guiney T. E., Beller G. A. Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of thallium-201. Circulation. 1977 Feb;55(2):294–302. doi: 10.1161/01.cir.55.2.294. [DOI] [PubMed] [Google Scholar]
- Ritchie J. L., Albro P. C., Caldwell J. H., Trobaugh G. B., Hamilton G. W. Thallium-201 myocardial imaging: a comparison of the redistribution and rest images. J Nucl Med. 1979 Jun;20(6):477–483. [PubMed] [Google Scholar]
- Rocco T. P., Dilsizian V., McKusick K. A., Fischman A. J., Boucher C. A., Strauss H. W. Comparison of thallium redistribution with rest "reinjection" imaging for the detection of viable myocardium. Am J Cardiol. 1990 Jul 15;66(2):158–163. doi: 10.1016/0002-9149(90)90580-t. [DOI] [PubMed] [Google Scholar]
- Schofer J., Montz R., Mathey D. G. Scintigraphic evidence of the "no reflow" phenomenon in human beings after coronary thrombolysis. J Am Coll Cardiol. 1985 Mar;5(3):593–598. doi: 10.1016/s0735-1097(85)80381-8. [DOI] [PubMed] [Google Scholar]
- Sriwattanakomen S., Ticzon A. R., Zubritzky S. A., Blobner C. G., Rice M., Duffy F. C., Lanna E. F. S-T segment elevation during exercise: electrocardiographic and arteriographic correlation in 38 patients. Am J Cardiol. 1980 Apr;45(4):762–768. doi: 10.1016/0002-9149(80)90119-8. [DOI] [PubMed] [Google Scholar]
- Tamaki N., Ohtani H., Yamashita K., Magata Y., Yonekura Y., Nohara R., Kambara H., Kawai C., Hirata K., Ban T. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med. 1991 Apr;32(4):673–678. [PubMed] [Google Scholar]
- Tamaki N., Yonekura Y., Yamashita K., Saji H., Magata Y., Senda M., Konishi Y., Hirata K., Ban T., Konishi J. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol. 1989 Oct 15;64(14):860–865. doi: 10.1016/0002-9149(89)90832-1. [DOI] [PubMed] [Google Scholar]
- Tillisch J., Brunken R., Marshall R., Schwaiger M., Mandelkern M., Phelps M., Schelbert H. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986 Apr 3;314(14):884–888. doi: 10.1056/NEJM198604033141405. [DOI] [PubMed] [Google Scholar]
- Waters D. D., Chaitman B. R., Bourassa M. G., Tubau J. F. Clinical and angiographic correlates of exercise-induced ST-segment elevation. Increased detection with multiple ECG leads. Circulation. 1980 Feb;61(2):286–296. doi: 10.1161/01.cir.61.2.286. [DOI] [PubMed] [Google Scholar]
- Weiner D. A., McCabe C., Klein M. D., Ryan T. J. ST segment changes post-infarction: predictive value for multivessel coronary disease and left ventricular aneurysm. Circulation. 1978 Nov;58(5):887–891. doi: 10.1161/01.cir.58.5.887. [DOI] [PubMed] [Google Scholar]

