Skip to main content
Heart logoLink to Heart
. 1999 Jun;81(6):612–617. doi: 10.1136/hrt.81.6.612

Correlation of heart rate variability with cardiac functional and metabolic variables in cyclists with training induced left ventricular hypertrophy

B Pluim 1, C Swenne 1, A Zwinderman 1, A Maan 1, A van der Laarse 1, J Doornbos 1, E E Van der Wall 1
PMCID: PMC1729065  PMID: 10336920

Abstract

OBJECTIVE—To examine the correlation between heart rate variability and left ventricular mass in cyclists with an athlete's heart.
METHODS—Left ventricular mass and diastolic function were determined at rest and myocardial high energy phosphates were quantified at rest and during atropine-dobutamine stress in 12 male cyclists and 10 control subjects, using magnetic resonance techniques. Ambulatory 24 hour ECG recordings were obtained, and time and frequency domain heart rate variability indices were computed.
RESULTS—In the cyclists, the mean of all RR intervals between normal beats (meanNN), the SD of the RR intervals, and their coefficient of variation were significantly greater than in control subjects (p < 0.01, p < 0.01, and p < 0.05, respectively). For cyclists and control subjects, only meanNN correlated with left ventricular mass (r = 0.48, p = 0.038). The heart rate variability indices that correlated with functional or metabolic variables were: meanNN v E/A peak (the ratio of peak early and peak atrial filling rate) (r = 0.48, p = 0.039); the root mean square of successive differences in RR intervals among successive normal beats v E/A area (ratio of peak early and peak atrial filling volume) (r = 0.48, p = 0.040); percentage of successive RR intervals differing by more than 50 ms v the phosphocreatine to ATP ratio at rest (r = 0.54, p = 0.017); and the SD of the average RR intervals during all five minute periods v the phosphocreatine to ATP ratio during stress (r = 0.60, p = 0.007).
CONCLUSIONS—Highly trained cyclists have increased heart rate variability indices, reflecting increased cardiac vagal control compared with control subjects. Left ventricular mass has no major influence on heart rate variability, but heart rate variability is significantly correlated with high energy phosphate metabolism and diastolic function.


Keywords: heart rate variability; left ventricular mass; hypertrophy; athlete's heart

Full Text

The Full Text of this article is available as a PDF (124.7 KB).

Figure 1  .

Figure 1  

Pearson correlation between SDANN (standard deviation of the average RR intervals during all five minute periods) and PCr/ATP ratio during atropine-dobutamine stress. ra, partial correlation coefficient adjusted for age. The figure shows the correlation without adjustment.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Algra A., Tijssen J. G., Roelandt J. R., Pool J., Lubsen J. Heart rate variability from 24-hour electrocardiography and the 2-year risk for sudden death. Circulation. 1993 Jul;88(1):180–185. doi: 10.1161/01.cir.88.1.180. [DOI] [PubMed] [Google Scholar]
  2. Barron H. V., Lesh M. D. Autonomic nervous system and sudden cardiac death. J Am Coll Cardiol. 1996 Apr;27(5):1053–1060. doi: 10.1016/0735-1097(95)00615-X. [DOI] [PubMed] [Google Scholar]
  3. Bernardi L., Valle F., Coco M., Calciati A., Sleight P. Physical activity influences heart rate variability and very-low-frequency components in Holter electrocardiograms. Cardiovasc Res. 1996 Aug;32(2):234–237. doi: 10.1016/0008-6363(96)00081-8. [DOI] [PubMed] [Google Scholar]
  4. Beyerbacht H. P., Vliegen H. W., Lamb H. J., Doornbos J., de Roos A., van der Laarse A., van der Wall E. E. Phosphorus magnetic resonance spectroscopy of the human heart: current status and clinical implications. Eur Heart J. 1996 Aug;17(8):1158–1166. doi: 10.1093/oxfordjournals.eurheartj.a015032. [DOI] [PubMed] [Google Scholar]
  5. Bigger J. T., Jr, Fleiss J. L., Steinman R. C., Rolnitzky L. M., Kleiger R. E., Rottman J. N. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation. 1992 Jan;85(1):164–171. doi: 10.1161/01.cir.85.1.164. [DOI] [PubMed] [Google Scholar]
  6. Boutcher S. H., Stein P. Association between heart rate variability and training response in sedentary middle-aged men. Eur J Appl Physiol Occup Physiol. 1995;70(1):75–80. doi: 10.1007/BF00601812. [DOI] [PubMed] [Google Scholar]
  7. Bryg R. J., Williams G. A., Labovitz A. J. Effect of aging on left ventricular diastolic filling in normal subjects. Am J Cardiol. 1987 Apr 15;59(9):971–974. doi: 10.1016/0002-9149(87)91136-2. [DOI] [PubMed] [Google Scholar]
  8. Coats A. J., Conway J., Sleight P., Meyer T. E., Somers V. K., Floras J. S., Vann Jones J. Interdependence of blood pressure and heart period regulation in mild hypertension. Am J Hypertens. 1991 Mar;4(3 Pt 1):234–238. doi: 10.1093/ajh/4.3.234. [DOI] [PubMed] [Google Scholar]
  9. Coplan N. L., Gleim G. W., Stachenfeld N., Eskenazi M., Morales M., Nicholas J. A. Evaluation of 85% predicted maximal heart rate as an end point for diagnostic exercise testing. Am Heart J. 1991 Dec;122(6):1790–1791. doi: 10.1016/0002-8703(91)90307-4. [DOI] [PubMed] [Google Scholar]
  10. De Meersman R. E. Heart rate variability and aerobic fitness. Am Heart J. 1993 Mar;125(3):726–731. doi: 10.1016/0002-8703(93)90164-5. [DOI] [PubMed] [Google Scholar]
  11. Dekker J. M., Schouten E. G., Klootwijk P., Pool J., Swenne C. A., Kromhout D. Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men. The Zutphen Study. Am J Epidemiol. 1997 May 15;145(10):899–908. doi: 10.1093/oxfordjournals.aje.a009049. [DOI] [PubMed] [Google Scholar]
  12. Dixon E. M., Kamath M. V., McCartney N., Fallen E. L. Neural regulation of heart rate variability in endurance athletes and sedentary controls. Cardiovasc Res. 1992 Jul;26(7):713–719. doi: 10.1093/cvr/26.7.713. [DOI] [PubMed] [Google Scholar]
  13. Farrell T. G., Bashir Y., Cripps T., Malik M., Poloniecki J., Bennett E. D., Ward D. E., Camm A. J. Risk stratification for arrhythmic events in postinfarction patients based on heart rate variability, ambulatory electrocardiographic variables and the signal-averaged electrocardiogram. J Am Coll Cardiol. 1991 Sep;18(3):687–697. doi: 10.1016/0735-1097(91)90791-7. [DOI] [PubMed] [Google Scholar]
  14. Fei L., Copie X., Malik M., Camm A. J. Short- and long-term assessment of heart rate variability for risk stratification after acute myocardial infarction. Am J Cardiol. 1996 Apr 1;77(9):681–684. doi: 10.1016/s0002-9149(97)89199-0. [DOI] [PubMed] [Google Scholar]
  15. Furlan R., Piazza S., Dell'Orto S., Gentile E., Cerutti S., Pagani M., Malliani A. Early and late effects of exercise and athletic training on neural mechanisms controlling heart rate. Cardiovasc Res. 1993 Mar;27(3):482–488. doi: 10.1093/cvr/27.3.482. [DOI] [PubMed] [Google Scholar]
  16. Goldsmith R. L., Bigger J. T., Jr, Steinman R. C., Fleiss J. L. Comparison of 24-hour parasympathetic activity in endurance-trained and untrained young men. J Am Coll Cardiol. 1992 Sep;20(3):552–558. doi: 10.1016/0735-1097(92)90007-a. [DOI] [PubMed] [Google Scholar]
  17. Janssen M. J., de Bie J., Swenne C. A., Oudhof J. Supine and standing sympathovagal balance in athletes and controls. Eur J Appl Physiol Occup Physiol. 1993;67(2):164–167. doi: 10.1007/BF00376661. [DOI] [PubMed] [Google Scholar]
  18. Katona P. G., McLean M., Dighton D. H., Guz A. Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jun;52(6):1652–1657. doi: 10.1152/jappl.1982.52.6.1652. [DOI] [PubMed] [Google Scholar]
  19. Kayser H. W., Stoel B. C., van der Wall E. E., van der Geest R. J., de Roos A. MR velocity mapping of tricuspid flow: correction for through-plane motion. J Magn Reson Imaging. 1997 Jul-Aug;7(4):669–673. doi: 10.1002/jmri.1880070410. [DOI] [PubMed] [Google Scholar]
  20. Kleiger R. E., Miller J. P., Bigger J. T., Jr, Moss A. J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987 Feb 1;59(4):256–262. doi: 10.1016/0002-9149(87)90795-8. [DOI] [PubMed] [Google Scholar]
  21. Kleiger R. E., Stein P. K., Bosner M. S., Rottman J. N. Time domain measurements of heart rate variability. Cardiol Clin. 1992 Aug;10(3):487–498. [PubMed] [Google Scholar]
  22. Kohara K., Hara-Nakamura N., Hiwada K. Left ventricular mass index negatively correlates with heart rate variability in essential hypertension. Am J Hypertens. 1995 Feb;8(2):183–188. doi: 10.1016/0895-7061(94)00190-M. [DOI] [PubMed] [Google Scholar]
  23. Lamb H. J., Doornbos J., den Hollander J. A., Luyten P. R., Beyerbacht H. P., van der Wall E. E., de Roos A. Reproducibility of human cardiac 31P-NMR spectroscopy. NMR Biomed. 1996 Aug;9(5):217–227. doi: 10.1002/(SICI)1099-1492(199608)9:5<217::AID-NBM419>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  24. Lamb H. J., Doornbos J., van der Velde E. A., Kruit M. C., Reiber J. H., de Roos A. Echo planar MRI of the heart on a standard system: validation of measurements of left ventricular function and mass. J Comput Assist Tomogr. 1996 Nov-Dec;20(6):942–949. doi: 10.1097/00004728-199611000-00014. [DOI] [PubMed] [Google Scholar]
  25. Maciel B. C., Gallo Júnior L., Marin Neto J. A., Lima Filho E. C., Terra Filho J., Manço J. C. Parasympathetic contribution to bradycardia induced by endurance training in man. Cardiovasc Res. 1985 Oct;19(10):642–648. doi: 10.1093/cvr/19.10.642. [DOI] [PubMed] [Google Scholar]
  26. Malik M., Camm A. J. Components of heart rate variability--what they really mean and what we really measure. Am J Cardiol. 1993 Oct 1;72(11):821–822. doi: 10.1016/0002-9149(93)91070-x. [DOI] [PubMed] [Google Scholar]
  27. Mandawat M. K., Wallbridge D. R., Pringle S. D., Riyami A. A., Latif S., Macfarlane P. W., Lorimer A. R., Cobbe S. M. Heart rate variability in left ventricular hypertrophy. Br Heart J. 1995 Feb;73(2):139–144. doi: 10.1136/hrt.73.2.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Maron B. J. Structural features of the athlete heart as defined by echocardiography. J Am Coll Cardiol. 1986 Jan;7(1):190–203. doi: 10.1016/s0735-1097(86)80282-0. [DOI] [PubMed] [Google Scholar]
  29. Neubauer S., Horn M., Cramer M., Harre K., Newell J. B., Peters W., Pabst T., Ertl G., Hahn D., Ingwall J. S. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation. 1997 Oct 7;96(7):2190–2196. doi: 10.1161/01.cir.96.7.2190. [DOI] [PubMed] [Google Scholar]
  30. Neubauer S., Krahe T., Schindler R., Horn M., Hillenbrand H., Entzeroth C., Mader H., Kromer E. P., Riegger G. A., Lackner K. 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation. 1992 Dec;86(6):1810–1818. doi: 10.1161/01.cir.86.6.1810. [DOI] [PubMed] [Google Scholar]
  31. Odemuyiwa O., Malik M., Farrell T., Bashir Y., Poloniecki J., Camm J. Comparison of the predictive characteristics of heart rate variability index and left ventricular ejection fraction for all-cause mortality, arrhythmic events and sudden death after acute myocardial infarction. Am J Cardiol. 1991 Aug 15;68(5):434–439. doi: 10.1016/0002-9149(91)90774-f. [DOI] [PubMed] [Google Scholar]
  32. Pattynama P. M., Lamb H. J., van der Velde E. A., van der Wall E. E., de Roos A. Left ventricular measurements with cine and spin-echo MR imaging: a study of reproducibility with variance component analysis. Radiology. 1993 Apr;187(1):261–268. doi: 10.1148/radiology.187.1.8451425. [DOI] [PubMed] [Google Scholar]
  33. Pelliccia A., Maron B. J., Spataro A., Proschan M. A., Spirito P. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N Engl J Med. 1991 Jan 31;324(5):295–301. doi: 10.1056/NEJM199101313240504. [DOI] [PubMed] [Google Scholar]
  34. Piccirillo G., Munizzi M. R., Fimognari F. L., Marigliano V. Heart rate variability in hypertensive subjects. Int J Cardiol. 1996 Mar;53(3):291–298. doi: 10.1016/0167-5273(95)02538-3. [DOI] [PubMed] [Google Scholar]
  35. Pluim B. M., Lamb H. J., Kayser H. W., Leujes F., Beyerbacht H. P., Zwinderman A. H., van der Laarse A., Vliegen H. W., de Roos A., van der Wall E. E. Functional and metabolic evaluation of the athlete's heart by magnetic resonance imaging and dobutamine stress magnetic resonance spectroscopy. Circulation. 1998 Feb 24;97(7):666–672. doi: 10.1161/01.cir.97.7.666. [DOI] [PubMed] [Google Scholar]
  36. Ponikowski P., Anker S. D., Chua T. P., Szelemej R., Piepoli M., Adamopoulos S., Webb-Peploe K., Harrington D., Banasiak W., Wrabec K. Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1997 Jun 15;79(12):1645–1650. doi: 10.1016/s0002-9149(97)00215-4. [DOI] [PubMed] [Google Scholar]
  37. Reiling M. J., Seals D. R. Respiratory sinus arrhythmia and carotid baroreflex control of heart rate in endurance athletes and untrained controls. Clin Physiol. 1988 Oct;8(5):511–519. doi: 10.1111/j.1475-097x.1988.tb00216.x. [DOI] [PubMed] [Google Scholar]
  38. Rich M. W., Saini J. S., Kleiger R. E., Carney R. M., teVelde A., Freedland K. E. Correlation of heart rate variability with clinical and angiographic variables and late mortality after coronary angiography. Am J Cardiol. 1988 Oct 1;62(10 Pt 1):714–717. doi: 10.1016/0002-9149(88)91208-8. [DOI] [PubMed] [Google Scholar]
  39. Sacknoff D. M., Gleim G. W., Stachenfeld N., Coplan N. L. Effect of athletic training on heart rate variability. Am Heart J. 1994 May;127(5):1275–1278. doi: 10.1016/0002-8703(94)90046-9. [DOI] [PubMed] [Google Scholar]
  40. Seals D. R., Chase P. B. Influence of physical training on heart rate variability and baroreflex circulatory control. J Appl Physiol (1985) 1989 Apr;66(4):1886–1895. doi: 10.1152/jappl.1989.66.4.1886. [DOI] [PubMed] [Google Scholar]
  41. Smith M. L., Hudson D. L., Graitzer H. M., Raven P. B. Exercise training bradycardia: the role of autonomic balance. Med Sci Sports Exerc. 1989 Feb;21(1):40–44. doi: 10.1249/00005768-198902000-00008. [DOI] [PubMed] [Google Scholar]
  42. Stein K. M., Borer J. S., Hochreiter C., Okin P. M., Herrold E. M., Devereux R. B., Kligfield P. Prognostic value and physiological correlates of heart rate variability in chronic severe mitral regurgitation. Circulation. 1993 Jul;88(1):127–135. doi: 10.1161/01.cir.88.1.127. [DOI] [PubMed] [Google Scholar]
  43. Tsuji H., Venditti F. J., Jr, Manders E. S., Evans J. C., Larson M. G., Feldman C. L., Levy D. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation. 1994 Aug;90(2):878–883. doi: 10.1161/01.cir.90.2.878. [DOI] [PubMed] [Google Scholar]
  44. Van Dam I., Fast J., de Boo T., Hopman J., Van Oort A., Heringa A., Alsters J., Van Der Werf T., Daniëls O. Normal diastolic filling patterns of the left ventricle. Eur Heart J. 1988 Feb;9(2):165–171. doi: 10.1093/oxfordjournals.eurheartj.a062470. [DOI] [PubMed] [Google Scholar]
  45. Van Hoogenhuyze D., Weinstein N., Martin G. J., Weiss J. S., Schaad J. W., Sahyouni X. N., Fintel D., Remme W. J., Singer D. H. Reproducibility and relation to mean heart rate of heart rate variability in normal subjects and in patients with congestive heart failure secondary to coronary artery disease. Am J Cardiol. 1991 Dec 15;68(17):1668–1676. doi: 10.1016/0002-9149(91)90327-h. [DOI] [PubMed] [Google Scholar]
  46. Weston P. J., Panerai R. B., McCullough A., McNally P. G., James M. A., Potter J. F., Thurston H., Swales J. D. Assessment of baroreceptor-cardiac reflex sensitivity using time domain analysis in patients with IDDM and the relation to left ventricular mass index. Diabetologia. 1996 Nov;39(11):1385–1391. doi: 10.1007/s001250050587. [DOI] [PubMed] [Google Scholar]
  47. van der Geest R. J., Buller V. G., Jansen E., Lamb H. J., Baur L. H., van der Wall E. E., de Roos A., Reiber J. H. Comparison between manual and semiautomated analysis of left ventricular volume parameters from short-axis MR images. J Comput Assist Tomogr. 1997 Sep-Oct;21(5):756–765. doi: 10.1097/00004728-199709000-00019. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES