Skip to main content
Heart logoLink to Heart
. 1999 Jul;82(1):93–95. doi: 10.1136/hrt.82.1.93

Handgrip exercise increases postocclusion hyperaemic brachial artery dilatation

S Agewall 1, G Whalley 1, R Doughty 1, N Sharpe 1
PMCID: PMC1729101  PMID: 10377317

Abstract

OBJECTIVE—To examine the effect of handgrip exercise induced ischaemia on non-invasive assessment of endothelial function in the brachial artery.
DESIGN AND SETTING—High frequency ultrasound was used to measure brachial artery diameter at rest and after reactive hyperaemia induced by forearm cuff occlusion with and without handgrip exercise induced ischaemia.
SUBJECTS—10 healthy subjects, < 40 years, without known cardiovascular risk factors.
MAIN OUTCOME MEASURES—Brachial artery dilatation and blood flow.
RESULTS—Hyperaemia following forearm occlusion with handgrip exercise induced ischaemia increased brachial artery diameter significantly more than hyperaemia following occlusion alone, 6.9 (3.2)% and 4.5 (1.6)%, respectively (95% confidence interval 0.3% to 4.5%). There was no difference in peak blood flow with and without exercise induced ischaemia
CONCLUSIONS—Handgrip exercise induced ischaemia with forearm occlusion caused more pronounced brachial artery dilatation than occlusion alone without change in peak blood flow. This suggests continued brachial artery responsiveness to the stimulus of ischaemia despite maximum blood flow and peripheral vasodilatation with occlusion alone.


Keywords: forearm blood flow; vasodilatation; handgrip exercise; ischaemia; endothelial function

Full Text

The Full Text of this article is available as a PDF (68.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson T. J., Uehata A., Gerhard M. D., Meredith I. T., Knab S., Delagrange D., Lieberman E. H., Ganz P., Creager M. A., Yeung A. C. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol. 1995 Nov 1;26(5):1235–1241. doi: 10.1016/0735-1097(95)00327-4. [DOI] [PubMed] [Google Scholar]
  2. Bhagat K., Hingorani A., Vallance P. Flow associated or flow mediated dilatation? More than just semantics. Heart. 1997 Jul;78(1):7–8. doi: 10.1136/hrt.78.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Celermajer D. S., Sorensen K. E., Georgakopoulos D., Bull C., Thomas O., Robinson J., Deanfield J. E. Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults. Circulation. 1993 Nov;88(5 Pt 1):2149–2155. doi: 10.1161/01.cir.88.5.2149. [DOI] [PubMed] [Google Scholar]
  4. Corretti M. C., Plotnick G. D., Vogel R. A. Technical aspects of evaluating brachial artery vasodilatation using high-frequency ultrasound. Am J Physiol. 1995 Apr;268(4 Pt 2):H1397–H1404. doi: 10.1152/ajpheart.1995.268.4.H1397. [DOI] [PubMed] [Google Scholar]
  5. Gill R. W. Measurement of blood flow by ultrasound: accuracy and sources of error. Ultrasound Med Biol. 1985 Jul-Aug;11(4):625–641. doi: 10.1016/0301-5629(85)90035-3. [DOI] [PubMed] [Google Scholar]
  6. Joannides R., Haefeli W. E., Linder L., Richard V., Bakkali E. H., Thuillez C., Lüscher T. F. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation. 1995 Mar 1;91(5):1314–1319. doi: 10.1161/01.cir.91.5.1314. [DOI] [PubMed] [Google Scholar]
  7. Leeson P., Thorne S., Donald A., Mullen M., Clarkson P., Deanfield J. Non-invasive measurement of endothelial function: effect on brachial artery dilatation of graded endothelial dependent and independent stimuli. Heart. 1997 Jul;78(1):22–27. doi: 10.1136/hrt.78.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lieberman E. H., Gerhard M. D., Uehata A., Selwyn A. P., Ganz P., Yeung A. C., Creager M. A. Flow-induced vasodilation of the human brachial artery is impaired in patients <40 years of age with coronary artery disease. Am J Cardiol. 1996 Dec 1;78(11):1210–1214. doi: 10.1016/s0002-9149(96)00597-8. [DOI] [PubMed] [Google Scholar]
  9. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  10. Shiode N., Morishima N., Nakayama K., Yamagata T., Matsuura H., Kajiyama G. Flow-mediated vasodilation of human epicardial coronary arteries: effect of inhibition of nitric oxide synthesis. J Am Coll Cardiol. 1996 Feb;27(2):304–310. doi: 10.1016/0735-1097(95)00465-3. [DOI] [PubMed] [Google Scholar]
  11. Vogel R. A., Corretti M. C., Plotnick G. D. Changes in flow-mediated brachial artery vasoactivity with lowering of desirable cholesterol levels in healthy middle-aged men. Am J Cardiol. 1996 Jan 1;77(1):37–40. doi: 10.1016/s0002-9149(97)89131-x. [DOI] [PubMed] [Google Scholar]

Articles from Heart are provided here courtesy of BMJ Publishing Group

RESOURCES